Low-intensity pulsed ultrasound (LIPUS) as an adjuvant therapy in in vitro and in vivo bone engineering has proven to be extremely useful. The present study aimed at investigating the effect of 30 mW/cm(2) LIPUS stimulation on commercially available human mesenchymal stem cells (hMSCs) cultured in basal or osteogenic medium at different experimental time points (7d, 14d, 21d). The hypothesis was that LIPUS would improve the osteogenic differentiation of hMSC and guarantying the maintenance of osteogenic committed fraction, as demonstrated by cell vitality and proteomic analysis. LIPUS stimulation (a) regulated the balance between osteoblast commitment and differentiation by specific networks (activations of RhoA/ROCK signaling and upregulation of Ribosome constituent/Protein metabolic process, Glycolysis/Gluconeogenesis, RNA metabolic process/Splicing and Tubulins); (b) allowed the maintenance of a few percentage of osteoblast precursors (21d CD73 + /CD90 + : 6%; OCT-3/4 + /NANOG + /SOX2 + : 10%); (c) induced the activation of osteogenic specific pathways shown by gene expression (early: ALPL, COL1A1, late: RUNX2, BGLAP, MAPK1/6) and related protein release (COL1a1, OPN, OC), in particular in the presence of osteogenic soluble factors able to mimic bone microenvironment. To summarize, LIPUS might be able to improve the osteogenic commitment of hMSCs in vitro, and, at the same time, enhance their osteogenic differentiation. This article is protected by copyright. All rights reserved.

Costa, V., Carina, V., Fontana, S., De Luca, A., Monteleone, F., Pagani, S., et al. (2018). Osteogenic commitment and differentiation of human mesenchymal stem cells by low-intensity pulsed ultrasound stimulation. JOURNAL OF CELLULAR PHYSIOLOGY, 233(2), 1558-1573 [10.1002/jcp.26058].

Osteogenic commitment and differentiation of human mesenchymal stem cells by low-intensity pulsed ultrasound stimulation

FONTANA, Simona;Monteleone, Francesca;ALESSANDRO, Riccardo;
2018-01-01

Abstract

Low-intensity pulsed ultrasound (LIPUS) as an adjuvant therapy in in vitro and in vivo bone engineering has proven to be extremely useful. The present study aimed at investigating the effect of 30 mW/cm(2) LIPUS stimulation on commercially available human mesenchymal stem cells (hMSCs) cultured in basal or osteogenic medium at different experimental time points (7d, 14d, 21d). The hypothesis was that LIPUS would improve the osteogenic differentiation of hMSC and guarantying the maintenance of osteogenic committed fraction, as demonstrated by cell vitality and proteomic analysis. LIPUS stimulation (a) regulated the balance between osteoblast commitment and differentiation by specific networks (activations of RhoA/ROCK signaling and upregulation of Ribosome constituent/Protein metabolic process, Glycolysis/Gluconeogenesis, RNA metabolic process/Splicing and Tubulins); (b) allowed the maintenance of a few percentage of osteoblast precursors (21d CD73 + /CD90 + : 6%; OCT-3/4 + /NANOG + /SOX2 + : 10%); (c) induced the activation of osteogenic specific pathways shown by gene expression (early: ALPL, COL1A1, late: RUNX2, BGLAP, MAPK1/6) and related protein release (COL1a1, OPN, OC), in particular in the presence of osteogenic soluble factors able to mimic bone microenvironment. To summarize, LIPUS might be able to improve the osteogenic commitment of hMSCs in vitro, and, at the same time, enhance their osteogenic differentiation. This article is protected by copyright. All rights reserved.
2018
Costa, V., Carina, V., Fontana, S., De Luca, A., Monteleone, F., Pagani, S., et al. (2018). Osteogenic commitment and differentiation of human mesenchymal stem cells by low-intensity pulsed ultrasound stimulation. JOURNAL OF CELLULAR PHYSIOLOGY, 233(2), 1558-1573 [10.1002/jcp.26058].
File in questo prodotto:
File Dimensione Formato  
J Cell Phys 2017.pdf

Solo gestori archvio

Descrizione: Articolo principale
Tipologia: Versione Editoriale
Dimensione 6.68 MB
Formato Adobe PDF
6.68 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10447/234657
Citazioni
  • ???jsp.display-item.citation.pmc??? 21
  • Scopus 39
  • ???jsp.display-item.citation.isi??? 35
social impact