With the aim to produce, by a simple and reproducible technique, porous scaffolds potentially employable for tissue engineering purposes, in this work, we have synthesized a methacrylate (MA) copolymer of α,β-poly(N-2-hydroxyethyl)-DL-aspartamide (PHEA) and polylactic acid (PLA). PHEA-PLA-MA has been dissolved in organic solvent at different concentrations in the presence of NaCl particles with different granulometry, and through UV irradiation and further salt leaching technique, various porous scaffolds have been prepared. Obtained samples have been characterized by scanning electron microscopy and their porosity has been evaluated as well as their degradation profile in aqueous medium in the absence or in the presence of esterase from porcine liver. PHEA-PLA-MA scaffold that has shown homogeneous porosity and the best degradation profile has been further characterized to study its mechanical properties along with its capacity to incorporate and to control the release of dexamethasone. Finally, the ability to allow a three-dimensional culture of bovine articular chondrocytes have been also investigated
Fiorica, C., Palumbo, F., Pitarresi, G., Giammona, G. (2017). Photocrosslinkable polyaspartamide/polylactide copolymer and its porous scaffolds for chondrocytes. MATERIALS SCIENCE AND ENGINEERING. C, BIOMIMETIC MATERIALS, SENSORS AND SYSTEMS, 76, 794-801 [10.1016/j.msec.2017.03.128].
Photocrosslinkable polyaspartamide/polylactide copolymer and its porous scaffolds for chondrocytes
FIORICA, Calogero;PALUMBO, Fabio Salvatore;PITARRESI, Giovanna;GIAMMONA, Gaetano
2017-01-01
Abstract
With the aim to produce, by a simple and reproducible technique, porous scaffolds potentially employable for tissue engineering purposes, in this work, we have synthesized a methacrylate (MA) copolymer of α,β-poly(N-2-hydroxyethyl)-DL-aspartamide (PHEA) and polylactic acid (PLA). PHEA-PLA-MA has been dissolved in organic solvent at different concentrations in the presence of NaCl particles with different granulometry, and through UV irradiation and further salt leaching technique, various porous scaffolds have been prepared. Obtained samples have been characterized by scanning electron microscopy and their porosity has been evaluated as well as their degradation profile in aqueous medium in the absence or in the presence of esterase from porcine liver. PHEA-PLA-MA scaffold that has shown homogeneous porosity and the best degradation profile has been further characterized to study its mechanical properties along with its capacity to incorporate and to control the release of dexamethasone. Finally, the ability to allow a three-dimensional culture of bovine articular chondrocytes have been also investigatedFile | Dimensione | Formato | |
---|---|---|---|
Mat Scien Engin.pdf
Solo gestori archvio
Dimensione
1.37 MB
Formato
Adobe PDF
|
1.37 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.