This work illustrates the use of geomatics techniques for the documentation of Teatro Massimo in Palermo (Italy), one of the most important and big in Italy and in Europe. The theatre is characterized by a very complex structure and is realized also using innovative solution, studied at the time of the project specifically for this building; for example, an original system was realized for a natural air-conditioning system of the auditorium. Due to his complexity, the documentation of the Teatro Massimo requires studying specific survey solutions for the different parts of the building. In this paper, some studies on two of the most representative parts of the building were described. In particular, a 3D survey of the auditorium was carried out to obtain a first 3D model of the most important internal part; a very accurate monitoring of structure inside the dome of the theatre was also carried out. The survey of the auditorium was realized by a Terrestrial Laser Scanning (TLS), that has allowed the creation of a digital archive of point clouds, showing, however, the some level of criticality due to the complex shapes of building and of architectural details. The work has highlighted that specific strategy to optimize the number of acquisitions needed for the complete documentation of the auditorium. The monitoring of the structure inside the dome was carried out by topographic and photogrammetric techniques. The monitoring was aimed at measuring the displacements of the support devices connecting the iron structure of the dome. The monitoring has allowed to understand and to test the proper functionality of this complex system. Some tests were carried out also by a thermal camera to correlate the displacements of the support devices with the dilatations produced by steel thermal gradients.
Dardanelli, G., Allegra, M., Giammarresi, V., Lo Brutto, M., Pipitone, C., Baiocchi, V. (2017). GEOMATIC METHODOLOGIES FOR THE STUDY OF TEATRO MASSIMO IN PALERMO (ITALY). THE INTERNATIONAL ARCHIVES OF THE PHOTOGRAMMETRY, REMOTE SENSING AND SPATIAL INFORMATION SCIENCES, XLII-5/W1(XLII-5/W1), 475-480 [10.5194/isprs-archives-XLII-5-W1-475-2017].
GEOMATIC METHODOLOGIES FOR THE STUDY OF TEATRO MASSIMO IN PALERMO (ITALY)
DARDANELLI, Gino;LO BRUTTO, Mauro;Pipitone, Claudia;
2017-01-01
Abstract
This work illustrates the use of geomatics techniques for the documentation of Teatro Massimo in Palermo (Italy), one of the most important and big in Italy and in Europe. The theatre is characterized by a very complex structure and is realized also using innovative solution, studied at the time of the project specifically for this building; for example, an original system was realized for a natural air-conditioning system of the auditorium. Due to his complexity, the documentation of the Teatro Massimo requires studying specific survey solutions for the different parts of the building. In this paper, some studies on two of the most representative parts of the building were described. In particular, a 3D survey of the auditorium was carried out to obtain a first 3D model of the most important internal part; a very accurate monitoring of structure inside the dome of the theatre was also carried out. The survey of the auditorium was realized by a Terrestrial Laser Scanning (TLS), that has allowed the creation of a digital archive of point clouds, showing, however, the some level of criticality due to the complex shapes of building and of architectural details. The work has highlighted that specific strategy to optimize the number of acquisitions needed for the complete documentation of the auditorium. The monitoring of the structure inside the dome was carried out by topographic and photogrammetric techniques. The monitoring was aimed at measuring the displacements of the support devices connecting the iron structure of the dome. The monitoring has allowed to understand and to test the proper functionality of this complex system. Some tests were carried out also by a thermal camera to correlate the displacements of the support devices with the dilatations produced by steel thermal gradients.File | Dimensione | Formato | |
---|---|---|---|
isprs-archives-XLII-5-W1-475-2017.pdf
accesso aperto
Descrizione: Articolo
Tipologia:
Versione Editoriale
Dimensione
1.49 MB
Formato
Adobe PDF
|
1.49 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.