The physicochemical characteristics of a biomaterial surface highly affect the interaction with living cells. Recently, much attention has been focused on the adhesion properties of functional biomaterials toward cancer cells, since is expected to control metastatic spread of a tumor, which is related to good probability containing the progression of disease burden. Here, we designed an implantable poly(caprolactone)-based electrospun microfiber scaffold, henceforth PCLMF-GO, to simultaneously capture and kill cancer cells by tuning physicochemical features of the hybrid surface through nitrogen plasma activation and hetero-phase graphene oxide (GO) covalent functionalization. The surface immobilization of GO implies enhanced cell adhesion and proliferation, promoting the selective adhesion of cancer cells, even if allowing cancer associated fibroblast (CAFs) capture. We also display that the functionalization with GO, thanks to the high near-infrared (NIR) absorbance, enables the discrete photothermal eradication of the captured cancer cells in situ (≈98%).

Mauro, N., Scialabba, C., Pitarresi, G., Giammona, G. (2017). Enhanced adhesion and in situ photothermal ablation of cancer cells in surface-functionalized electrospun microfiber scaffold with graphene oxide. INTERNATIONAL JOURNAL OF PHARMACEUTICS, 526(1-2), 167-177 [10.1016/j.ijpharm.2017.04.045].

Enhanced adhesion and in situ photothermal ablation of cancer cells in surface-functionalized electrospun microfiber scaffold with graphene oxide

Mauro, Nicolò
;
SCIALABBA, Cinzia;PITARRESI, Giovanna;GIAMMONA, Gaetano
2017-01-01

Abstract

The physicochemical characteristics of a biomaterial surface highly affect the interaction with living cells. Recently, much attention has been focused on the adhesion properties of functional biomaterials toward cancer cells, since is expected to control metastatic spread of a tumor, which is related to good probability containing the progression of disease burden. Here, we designed an implantable poly(caprolactone)-based electrospun microfiber scaffold, henceforth PCLMF-GO, to simultaneously capture and kill cancer cells by tuning physicochemical features of the hybrid surface through nitrogen plasma activation and hetero-phase graphene oxide (GO) covalent functionalization. The surface immobilization of GO implies enhanced cell adhesion and proliferation, promoting the selective adhesion of cancer cells, even if allowing cancer associated fibroblast (CAFs) capture. We also display that the functionalization with GO, thanks to the high near-infrared (NIR) absorbance, enables the discrete photothermal eradication of the captured cancer cells in situ (≈98%).
2017
Mauro, N., Scialabba, C., Pitarresi, G., Giammona, G. (2017). Enhanced adhesion and in situ photothermal ablation of cancer cells in surface-functionalized electrospun microfiber scaffold with graphene oxide. INTERNATIONAL JOURNAL OF PHARMACEUTICS, 526(1-2), 167-177 [10.1016/j.ijpharm.2017.04.045].
File in questo prodotto:
File Dimensione Formato  
2017 Int J Pharm grafene.pdf

Solo gestori archvio

Dimensione 3.44 MB
Formato Adobe PDF
3.44 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10447/228473
Citazioni
  • ???jsp.display-item.citation.pmc??? 10
  • Scopus 40
  • ???jsp.display-item.citation.isi??? 40
social impact