Angiotensin II (AngII), the principal effector of the Renin-Angiotensin System (RAS), plays an important role in controlling mammalian cardiac morpho-functional remodelling. In the eel Anguilla anguilla, one month administration of AngII improves cardiac performance and influences the expression and localization of molecules which regulate cell growth. To deeper investigate the morpho-functional chronic influences of AngII on the eel heart and the molecular mechanisms involved, freshwater eels (A. anguilla) were intraperitoneally injected for 2 months with AngII (1 nmol g BW-1). Then the isolated hearts were subjected to morphological and western blotting analyses, and nitrite measurements. If compared to control animals, the ventricle of AngII-treated hearts showed an increase in compacta thickness, vascularization, muscle mass and fibrosis. Structural changes were paralleled by a higher expression of AT2 receptor and a negative modulation of the ERK1-2 pathway, together with a decrease in nitrite concentration, indicative of a reduced Nitric Oxide Synthase (NOS)-dependent NO production. Moreover, immunolocalization revealed, particularly on the endocardial endothelium (EE) of AngII-treated hearts, a significant reduction of phosphorylated NOS detected by peNOS antibody accompanied by an increased expression of the eNOS disabling protein NOSTRIN, and a decreased expression of the positive regulators of NOS activity, pAkt and Hsp90. On the whole, results suggest that, in the eel, AngII modulates cardiac morpho-functional plasticity by influencing the molecular mechanisms that control NOS activity and the ERK1-2 pathway.

Filice, M., D Garofalo F, A., David, S., Fucarino, A., Jensen, F., Imbrogno, S., et al. (2017). Angiotensin II dependent cardiac remodeling in the eel Anguilla anguilla involves the NOS/NO system. NITRIC OXIDE, 65, 50-59 [10.1016/j.niox.2017.02.007].

Angiotensin II dependent cardiac remodeling in the eel Anguilla anguilla involves the NOS/NO system

DAVID, Sabrina;Fucarino, A.;
2017-01-01

Abstract

Angiotensin II (AngII), the principal effector of the Renin-Angiotensin System (RAS), plays an important role in controlling mammalian cardiac morpho-functional remodelling. In the eel Anguilla anguilla, one month administration of AngII improves cardiac performance and influences the expression and localization of molecules which regulate cell growth. To deeper investigate the morpho-functional chronic influences of AngII on the eel heart and the molecular mechanisms involved, freshwater eels (A. anguilla) were intraperitoneally injected for 2 months with AngII (1 nmol g BW-1). Then the isolated hearts were subjected to morphological and western blotting analyses, and nitrite measurements. If compared to control animals, the ventricle of AngII-treated hearts showed an increase in compacta thickness, vascularization, muscle mass and fibrosis. Structural changes were paralleled by a higher expression of AT2 receptor and a negative modulation of the ERK1-2 pathway, together with a decrease in nitrite concentration, indicative of a reduced Nitric Oxide Synthase (NOS)-dependent NO production. Moreover, immunolocalization revealed, particularly on the endocardial endothelium (EE) of AngII-treated hearts, a significant reduction of phosphorylated NOS detected by peNOS antibody accompanied by an increased expression of the eNOS disabling protein NOSTRIN, and a decreased expression of the positive regulators of NOS activity, pAkt and Hsp90. On the whole, results suggest that, in the eel, AngII modulates cardiac morpho-functional plasticity by influencing the molecular mechanisms that control NOS activity and the ERK1-2 pathway.
2017
Filice, M., D Garofalo F, A., David, S., Fucarino, A., Jensen, F., Imbrogno, S., et al. (2017). Angiotensin II dependent cardiac remodeling in the eel Anguilla anguilla involves the NOS/NO system. NITRIC OXIDE, 65, 50-59 [10.1016/j.niox.2017.02.007].
File in questo prodotto:
File Dimensione Formato  
damelio cerra david pdf.pdf

Solo gestori archvio

Dimensione 2.52 MB
Formato Adobe PDF
2.52 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10447/228147
Citazioni
  • ???jsp.display-item.citation.pmc??? 8
  • Scopus 14
  • ???jsp.display-item.citation.isi??? 14
social impact