Volcanoes are an important source of inorganic halogen species into the atmosphere. Chemical processing of these species generates oxidised, highly reactive, halogen species which catalyse considerable O3 destruction within volcanic plumes. A campaign of ground-based in situ O3, SO2 and meteorology measurements was undertaken at the summit of Mount Etna volcano in July/August 2012. At the same time, spectroscopic measurements were made of BrO and SO2 columns in the plume downwind. Depletions of ozone were seen at all in-plume measurement locations, with average O3 depletions ranging from 11-35 nmol mol-1 (15-45%). Atmospheric processing times of the plume were estimated to be between 1 and 4 min. A 1-D numerical model of early plume evolution was also used. It was found that in the early plume O3 was destroyed at an approximately constant rate relative to an inert plume tracer. This is ascribed to reactive halogen chemistry, and the data suggests the majority of the reactive halogen that destroys O3 in the early plume is generated within the crater, including a substantial proportion generated in a high-temperature "effective source region" immediately after emission. The model could approximately reproduce the main measured features of the ozone chemistry. Model results show a strong dependence of the near-vent bromine chemistry on the presence or absence of volcanic NOx emissions and suggest that near-vent ozone measurements can be used as a qualitative indicator of NOx emission.

Surl, L., Donohoue, D., Aiuppa, A., Bobrowski, N., Von Glasow, R. (2015). Quantification of the depletion of ozone in the plume of Mount Etna. ATMOSPHERIC CHEMISTRY AND PHYSICS, 15(5), 2613-2628 [10.5194/acp-15-2613-2015].

Quantification of the depletion of ozone in the plume of Mount Etna

AIUPPA, Alessandro;
2015-01-01

Abstract

Volcanoes are an important source of inorganic halogen species into the atmosphere. Chemical processing of these species generates oxidised, highly reactive, halogen species which catalyse considerable O3 destruction within volcanic plumes. A campaign of ground-based in situ O3, SO2 and meteorology measurements was undertaken at the summit of Mount Etna volcano in July/August 2012. At the same time, spectroscopic measurements were made of BrO and SO2 columns in the plume downwind. Depletions of ozone were seen at all in-plume measurement locations, with average O3 depletions ranging from 11-35 nmol mol-1 (15-45%). Atmospheric processing times of the plume were estimated to be between 1 and 4 min. A 1-D numerical model of early plume evolution was also used. It was found that in the early plume O3 was destroyed at an approximately constant rate relative to an inert plume tracer. This is ascribed to reactive halogen chemistry, and the data suggests the majority of the reactive halogen that destroys O3 in the early plume is generated within the crater, including a substantial proportion generated in a high-temperature "effective source region" immediately after emission. The model could approximately reproduce the main measured features of the ozone chemistry. Model results show a strong dependence of the near-vent bromine chemistry on the presence or absence of volcanic NOx emissions and suggest that near-vent ozone measurements can be used as a qualitative indicator of NOx emission.
2015
Settore GEO/08 - Geochimica E Vulcanologia
Surl, L., Donohoue, D., Aiuppa, A., Bobrowski, N., Von Glasow, R. (2015). Quantification of the depletion of ozone in the plume of Mount Etna. ATMOSPHERIC CHEMISTRY AND PHYSICS, 15(5), 2613-2628 [10.5194/acp-15-2613-2015].
File in questo prodotto:
File Dimensione Formato  
Surl et al 2015 acp-15-2613-2015.pdf

accesso aperto

Tipologia: Versione Editoriale
Dimensione 1.29 MB
Formato Adobe PDF
1.29 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10447/227164
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 21
  • ???jsp.display-item.citation.isi??? 21
social impact