Using femtosecond-resolved photoluminescence up-conversion, we report the observation of the fluorescence of the high-lying ligand-centered (LC) electronic state upon 266 nm excitation of an iridium complex, Ir(ppy)3, with a lifetime of 70 ± 10 fs. It is accompanied by a simultaneous emission of all lower-lying electronic states, except the lowest triplet metal-to-ligand charge-transfer (3MLCT) state that shows a rise on the same time scale. Thus, we observe the departure, the intermediate steps, and the arrival of the relaxation cascade spanning ∼1.6 eV from the 1LC state to the lowest 3MLCT state, which then yields the long-lived luminescence of the molecule. This represents the first measurement of the total relaxation time over an entire cascade of electronic states in a polyatomic molecule. We find that the relaxation cascade proceeds in ≈10 fs, which is faster than some of the highest-frequency modes of the system. We invoke the participation of the latter modes in conical intersections and their overdamping to low-frequency intramolecular modes. On the basis of literature, we also conclude that this behavior is not specific to transition-metal complexes but also applies to organic molecules.
Messina, F., Pomarico, E., Silatani, M., Baranoff, E., Chergui, M. (2015). Ligand-Centred Fluorescence and Electronic Relaxation Cascade at Vibrational Time Scales in Transition-Metal Complexes. THE JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 6(22), 4475-4480 [10.1021/acs.jpclett.5b02146].
Ligand-Centred Fluorescence and Electronic Relaxation Cascade at Vibrational Time Scales in Transition-Metal Complexes
MESSINA, Fabrizio;
2015-01-01
Abstract
Using femtosecond-resolved photoluminescence up-conversion, we report the observation of the fluorescence of the high-lying ligand-centered (LC) electronic state upon 266 nm excitation of an iridium complex, Ir(ppy)3, with a lifetime of 70 ± 10 fs. It is accompanied by a simultaneous emission of all lower-lying electronic states, except the lowest triplet metal-to-ligand charge-transfer (3MLCT) state that shows a rise on the same time scale. Thus, we observe the departure, the intermediate steps, and the arrival of the relaxation cascade spanning ∼1.6 eV from the 1LC state to the lowest 3MLCT state, which then yields the long-lived luminescence of the molecule. This represents the first measurement of the total relaxation time over an entire cascade of electronic states in a polyatomic molecule. We find that the relaxation cascade proceeds in ≈10 fs, which is faster than some of the highest-frequency modes of the system. We invoke the participation of the latter modes in conical intersections and their overdamping to low-frequency intramolecular modes. On the basis of literature, we also conclude that this behavior is not specific to transition-metal complexes but also applies to organic molecules.File | Dimensione | Formato | |
---|---|---|---|
2015_JPCL.pdf
Solo gestori archvio
Descrizione: Articolo principale
Tipologia:
Versione Editoriale
Dimensione
1.56 MB
Formato
Adobe PDF
|
1.56 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.