Lysozyme is an important defense molecule of the innate immune system. Known for its bactericidal properties, lysozyme catalyzes the hydrolysis of b-(1,4)-glycosidic bonds between the N-acetyl glucosamine and N-acetyl muramic acid in the peptidoglycan layer of bacterial cell walls. In this study, the complete coding sequence of four g-type lysozymes were identified in Ciona intestinalis. Phylogenetic analysis and modelling supported the hypothesis of a close relationship with the vertebrate g-type lysozymes suggesting that the C. intestinalis g-type lysozyme genes (CiLys-g1, Cilys-g2, CiLys-g3, CiLys-g4) share a common ancestor in the chordate lineage. Protein motif searches indicated that C. intestinalis g-type lysozymes contain a GEWL domain with a GXXQ signature, typical of goose lysozymes. Quantitative Real-Time PCR analysis results showed that transcripts are expressed in various tissues from C. intestinalis. In order to determine the involvement of C. intestinalis g-type lysozyme...
Di Falco, F., Cammarata, M., Vizzini, A. (2017). Molecular characterisation, evolution and expression analysis of g-type lysozymes in Ciona intestinalis. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY, 67(67), 457-463 [10.1016/j.dci.2016.09.010].
Molecular characterisation, evolution and expression analysis of g-type lysozymes in Ciona intestinalis
CAMMARATA, Matteo;VIZZINI, Aiti
2017-01-01
Abstract
Lysozyme is an important defense molecule of the innate immune system. Known for its bactericidal properties, lysozyme catalyzes the hydrolysis of b-(1,4)-glycosidic bonds between the N-acetyl glucosamine and N-acetyl muramic acid in the peptidoglycan layer of bacterial cell walls. In this study, the complete coding sequence of four g-type lysozymes were identified in Ciona intestinalis. Phylogenetic analysis and modelling supported the hypothesis of a close relationship with the vertebrate g-type lysozymes suggesting that the C. intestinalis g-type lysozyme genes (CiLys-g1, Cilys-g2, CiLys-g3, CiLys-g4) share a common ancestor in the chordate lineage. Protein motif searches indicated that C. intestinalis g-type lysozymes contain a GEWL domain with a GXXQ signature, typical of goose lysozymes. Quantitative Real-Time PCR analysis results showed that transcripts are expressed in various tissues from C. intestinalis. In order to determine the involvement of C. intestinalis g-type lysozyme...| File | Dimensione | Formato | |
|---|---|---|---|
|
Di falco 2016 lisozima.pdf
accesso aperto
Dimensione
1.65 MB
Formato
Adobe PDF
|
1.65 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


