We consider sequences of degrees of ordinary irreducible Sncharacters. We assume that the corresponding Young diagrams have rows and columns bounded by some linear function of n with leading coefficient less than one. We show that any such sequence has at least exponential growth and we compute an explicit bound.

Giambruno, A., Mishchenko, S. (2016). Degrees of irreducible characters of the symmetric group and exponential growth. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 144(3), 943-953 [10.1090/proc/12758].

Degrees of irreducible characters of the symmetric group and exponential growth

GIAMBRUNO, Antonino;
2016-01-01

Abstract

We consider sequences of degrees of ordinary irreducible Sncharacters. We assume that the corresponding Young diagrams have rows and columns bounded by some linear function of n with leading coefficient less than one. We show that any such sequence has at least exponential growth and we compute an explicit bound.
http://www.ams.org/journals/proc/2016-144-03/S0002-9939-2015-12758-X/S0002-9939-2015-12758-X.pdf
Giambruno, A., Mishchenko, S. (2016). Degrees of irreducible characters of the symmetric group and exponential growth. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 144(3), 943-953 [10.1090/proc/12758].
File in questo prodotto:
File Dimensione Formato  
Giambruno,Mishchenko-2016-PAMS.pdf

Solo gestori archvio

Dimensione 186.17 kB
Formato Adobe PDF
186.17 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10447/219021
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 2
social impact