Because endurance exercise causes release of mediators and growth factors active on the bone marrow, we asked whether it might affect circulating hematopoietic progenitor cells (HPCs) in amateur runners [n = 16, age: 41.8 ± 13.5 (SD) yr, training: 93.8 ± 31.8 km/wk] compared with sedentary controls (n = 9, age: 39.4 ± 10.2 yr). HPCs, plasma cortisol, interleukin (IL)-6, granulocyte colony-stimulating factor (G-CSF), and the growth factor fms-like tyrosine kinase-3 (flt3)-ligand were measured at rest and after a marathon (M; n = 8) or half-marathon (HM; n = 8). Circulating HPC counts (i.e., CD34+ cells and their subpopulations) were three- to fourfold higher in runners than in controls at baseline. They were unaffected by HM or M acutely but decreased the morning postrace. Baseline cortisol, flt3-ligand, IL-6, and G-CSF levels were similar in runners and controls. IL-6 and G-CSF increased to higher levels after M compared with HM, whereas cortisol and flt3-ligand increased similarly postrace. Our data suggest that increased HPCs reflect an adaptation response to recurrent, exercise-associated release of neutrophils and stress and inflammatory mediators, indicating modulation of bone marrow activity by habitual running.

Bonsignore, M., Morici, G., Santoro, A., Pagano, M., Cascio, L., Bonanno, A., et al. (2002). Circulating hematopoietic progenitor cells in runners. JOURNAL OF APPLIED PHYSIOLOGY, 93(5), 1691-1697.

Circulating hematopoietic progenitor cells in runners

BONSIGNORE, Maria Rosaria;MORICI, Giuseppe;
2002-01-01

Abstract

Because endurance exercise causes release of mediators and growth factors active on the bone marrow, we asked whether it might affect circulating hematopoietic progenitor cells (HPCs) in amateur runners [n = 16, age: 41.8 ± 13.5 (SD) yr, training: 93.8 ± 31.8 km/wk] compared with sedentary controls (n = 9, age: 39.4 ± 10.2 yr). HPCs, plasma cortisol, interleukin (IL)-6, granulocyte colony-stimulating factor (G-CSF), and the growth factor fms-like tyrosine kinase-3 (flt3)-ligand were measured at rest and after a marathon (M; n = 8) or half-marathon (HM; n = 8). Circulating HPC counts (i.e., CD34+ cells and their subpopulations) were three- to fourfold higher in runners than in controls at baseline. They were unaffected by HM or M acutely but decreased the morning postrace. Baseline cortisol, flt3-ligand, IL-6, and G-CSF levels were similar in runners and controls. IL-6 and G-CSF increased to higher levels after M compared with HM, whereas cortisol and flt3-ligand increased similarly postrace. Our data suggest that increased HPCs reflect an adaptation response to recurrent, exercise-associated release of neutrophils and stress and inflammatory mediators, indicating modulation of bone marrow activity by habitual running.
2002
Settore MED/10 - Malattie Dell'Apparato Respiratorio
Settore BIO/09 - Fisiologia
Bonsignore, M., Morici, G., Santoro, A., Pagano, M., Cascio, L., Bonanno, A., et al. (2002). Circulating hematopoietic progenitor cells in runners. JOURNAL OF APPLIED PHYSIOLOGY, 93(5), 1691-1697.
File in questo prodotto:
File Dimensione Formato  
MBCD34+.pdf

accesso aperto

Descrizione: articolo principale
Dimensione 229.54 kB
Formato Adobe PDF
229.54 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10447/215663
Citazioni
  • ???jsp.display-item.citation.pmc??? 24
  • Scopus 108
  • ???jsp.display-item.citation.isi??? 101
social impact