An innovative respirometric method was applied to evaluate the autotrophic active fraction in an alternate anoxic/oxic membrane bioreactor (MBR) pilot plant. The alternate cycle (AC) produces a complex microbiological environment that allows the development of both autotrophic and heterotrophic species in one reactor. The present study aimed to evaluate autotrophic and heterotrophic active fractions and highlight the effect of different aeration/non aeration ratios in a AC-MBR pilot plant using respirometry. The results outlined that the autotrophic active fraction values were consistent with the nitrification efficiency and FISH analyses, which suggests its usefulness for estimating the nitrifying population. Intermittent aeration did not significantly affect the heterotrophic metabolic activity but significantly affected the autotrophic biomass development. Finally, the heterotrophic active biomass was strongly affected by the wastewater characteristics, whereas the resultant autotrophic biomass was considerably affected by the duration of the aerated phase.
Capodici, M., Corsino, S.F., Di Pippo, F., Di Trapani, D., Torregrossa, M. (2016). An innovative respirometric method to assess the autotrophic active fraction: Application to an alternate oxic-anoxic MBR pilot plant. CHEMICAL ENGINEERING JOURNAL, 300, 367-375 [10.1016/j.cej.2016.04.134].
An innovative respirometric method to assess the autotrophic active fraction: Application to an alternate oxic-anoxic MBR pilot plant
CAPODICI, Marco;Corsino, Santo Fabio;DI TRAPANI, Daniele
;TORREGROSSA, Michele
2016-01-01
Abstract
An innovative respirometric method was applied to evaluate the autotrophic active fraction in an alternate anoxic/oxic membrane bioreactor (MBR) pilot plant. The alternate cycle (AC) produces a complex microbiological environment that allows the development of both autotrophic and heterotrophic species in one reactor. The present study aimed to evaluate autotrophic and heterotrophic active fractions and highlight the effect of different aeration/non aeration ratios in a AC-MBR pilot plant using respirometry. The results outlined that the autotrophic active fraction values were consistent with the nitrification efficiency and FISH analyses, which suggests its usefulness for estimating the nitrifying population. Intermittent aeration did not significantly affect the heterotrophic metabolic activity but significantly affected the autotrophic biomass development. Finally, the heterotrophic active biomass was strongly affected by the wastewater characteristics, whereas the resultant autotrophic biomass was considerably affected by the duration of the aerated phase.File | Dimensione | Formato | |
---|---|---|---|
Capodici et al. 2016.pdf
Solo gestori archvio
Descrizione: Articolo su rivista
Tipologia:
Versione Editoriale
Dimensione
1.08 MB
Formato
Adobe PDF
|
1.08 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.