We consider a class of overdetermined problems in rotationally symmetric spaces, which reduce to the classical Serrin’s overdetermined problem in the case of the Euclidean space. We prove some general integral identities for rotationally symmetric spaces which imply a rigidity result in the case of the round sphere.

Ciraolo, G., Vezzoni, L. (2017). A rigidity problem on the round sphere. COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 19(5) [http://dx.doi.org/10.1142/S0219199717500018].

A rigidity problem on the round sphere

CIRAOLO, Giulio;
2017-01-01

Abstract

We consider a class of overdetermined problems in rotationally symmetric spaces, which reduce to the classical Serrin’s overdetermined problem in the case of the Euclidean space. We prove some general integral identities for rotationally symmetric spaces which imply a rigidity result in the case of the round sphere.
2017
Ciraolo, G., Vezzoni, L. (2017). A rigidity problem on the round sphere. COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 19(5) [http://dx.doi.org/10.1142/S0219199717500018].
File in questo prodotto:
File Dimensione Formato  
25 - Ciraolo Vezzoni CCM 2016.pdf

Solo gestori archvio

Dimensione 179.1 kB
Formato Adobe PDF
179.1 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10447/210005
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 7
social impact