The distance of an almost constant mean curvature boundary from a finite family of disjoint tangent balls with equal radii is quantitatively controlled in terms of the oscillation of the scalar mean curvature. This result allows one to quantitatively describe the geometry of volume-constrained stationary sets in capillarity problems.

Ciraolo, G., Maggi, F. (2017). On the shape of compact hypersurfaces with almost constant mean curvature. COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 70, 665-716 [10.1002/cpa.21683].

On the shape of compact hypersurfaces with almost constant mean curvature

CIRAOLO, Giulio;
2017-01-01

Abstract

The distance of an almost constant mean curvature boundary from a finite family of disjoint tangent balls with equal radii is quantitatively controlled in terms of the oscillation of the scalar mean curvature. This result allows one to quantitatively describe the geometry of volume-constrained stationary sets in capillarity problems.
2017
Ciraolo, G., Maggi, F. (2017). On the shape of compact hypersurfaces with almost constant mean curvature. COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 70, 665-716 [10.1002/cpa.21683].
File in questo prodotto:
File Dimensione Formato  
26 - Ciraolo Maggi CPAM 2017.pdf

Solo gestori archvio

Dimensione 406.37 kB
Formato Adobe PDF
406.37 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10447/210000
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 43
  • ???jsp.display-item.citation.isi??? 37
social impact