Titanium alloys are considered desirable materials when both good mechanical properties and weight reduction are required at the same time. This class of materials is widely used in those fields (aeronautics, aerospace) in which common steels and light-weight materials, e.g., aluminum alloys, are not able to satisfy all operative service conditions. During the last decade, forging of titanium alloys has attracted greater attention from both industrial and scientific/academic researchers because of their potential in providing a near net shaped part with minimal need for machining. In this paper, a numerical model of the forging sequences for a Ti-6Al-4V titanium alloy aerospace component is presented. The model was tested and validated against experimental forgings. The model is then applied to predict loads final microstructure and defects of an aeronautical component. In addition to metal flow and die stresses, microstructural transformations (α and β phases) are considered for the determination of proper process parameters. It is found that transformation from α/β to β phase during forging and reverse transformations in post-forge cooling needs to be considered in the computational model for reasonable prediction of forging loads and product properties.

Ducato, A., Buffa, G., Fratini, L., Shivpuri, R. (2015). Dual phase titanium alloy hot forging process design: experiments and numerical modeling. ADVANCES IN MANUFACTURING, 3(4), 269-281 [10.1007/s40436-015-0127-0].

Dual phase titanium alloy hot forging process design: experiments and numerical modeling

DUCATO, Antonino;BUFFA, Gianluca;FRATINI, Livan;
2015-01-01

Abstract

Titanium alloys are considered desirable materials when both good mechanical properties and weight reduction are required at the same time. This class of materials is widely used in those fields (aeronautics, aerospace) in which common steels and light-weight materials, e.g., aluminum alloys, are not able to satisfy all operative service conditions. During the last decade, forging of titanium alloys has attracted greater attention from both industrial and scientific/academic researchers because of their potential in providing a near net shaped part with minimal need for machining. In this paper, a numerical model of the forging sequences for a Ti-6Al-4V titanium alloy aerospace component is presented. The model was tested and validated against experimental forgings. The model is then applied to predict loads final microstructure and defects of an aeronautical component. In addition to metal flow and die stresses, microstructural transformations (α and β phases) are considered for the determination of proper process parameters. It is found that transformation from α/β to β phase during forging and reverse transformations in post-forge cooling needs to be considered in the computational model for reasonable prediction of forging loads and product properties.
2015
Ducato, A., Buffa, G., Fratini, L., Shivpuri, R. (2015). Dual phase titanium alloy hot forging process design: experiments and numerical modeling. ADVANCES IN MANUFACTURING, 3(4), 269-281 [10.1007/s40436-015-0127-0].
File in questo prodotto:
File Dimensione Formato  
2-s2.0-84949237501.pdf

Solo gestori archvio

Dimensione 2.95 MB
Formato Adobe PDF
2.95 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10447/204399
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 10
  • ???jsp.display-item.citation.isi??? 10
social impact