Cancer-driven granulo-monocytopoiesis stimulates expansion of tumor promoting myeloid populations, mostly myeloid-derived suppressor cells (MDSCs) and tumor-associated macrophages (TAMs). We identified subsets of MDSCs and TAMs based on the expression of retinoic-acid-related orphan receptor (RORC1/RORγ) in human and mouse tumor bearers. RORC1 orchestrates myelopoiesis by suppressing negative (Socs3 and Bcl3) and promoting positive (C/EBPβ) regulators of granulopoiesis, as well as the key transcriptional mediators of myeloid progenitor commitment and differentiation to the monocytic/macrophage lineage (IRF8 and PU.1). RORC1 supported tumor-promoting innate immunity by protecting MDSCs from apoptosis, mediating TAM differentiation and M2 polarization, and limiting tumor infiltration by mature neutrophils. Accordingly, ablation of RORC1 in the hematopoietic compartment prevented cancer-driven myelopoiesis, resulting in inhibition of tumor growth and metastasis. Strauss et al. show that RORC1 orchestrates myelopoiesis and supports tumor-promoting innate immunity. Importantly, ablation of RORC1 in the myeloid compartment inhibits tumor growth and metastasis, suggesting a cancer therapeutic approach.

Strauss, L., Sangaletti, S., Consonni, F., Szebeni, G., Morlacchi, S., Totaro, M., et al. (2015). RORC1 Regulates Tumor-Promoting "Emergency" Granulo-Monocytopoiesis. CANCER CELL, 28(2), 253-269 [10.1016/j.ccell.2015.07.006].

RORC1 Regulates Tumor-Promoting "Emergency" Granulo-Monocytopoiesis

TRIPODO, Claudio;
2015-01-01

Abstract

Cancer-driven granulo-monocytopoiesis stimulates expansion of tumor promoting myeloid populations, mostly myeloid-derived suppressor cells (MDSCs) and tumor-associated macrophages (TAMs). We identified subsets of MDSCs and TAMs based on the expression of retinoic-acid-related orphan receptor (RORC1/RORγ) in human and mouse tumor bearers. RORC1 orchestrates myelopoiesis by suppressing negative (Socs3 and Bcl3) and promoting positive (C/EBPβ) regulators of granulopoiesis, as well as the key transcriptional mediators of myeloid progenitor commitment and differentiation to the monocytic/macrophage lineage (IRF8 and PU.1). RORC1 supported tumor-promoting innate immunity by protecting MDSCs from apoptosis, mediating TAM differentiation and M2 polarization, and limiting tumor infiltration by mature neutrophils. Accordingly, ablation of RORC1 in the hematopoietic compartment prevented cancer-driven myelopoiesis, resulting in inhibition of tumor growth and metastasis. Strauss et al. show that RORC1 orchestrates myelopoiesis and supports tumor-promoting innate immunity. Importantly, ablation of RORC1 in the myeloid compartment inhibits tumor growth and metastasis, suggesting a cancer therapeutic approach.
2015
Settore MED/08 - Anatomia Patologica
Strauss, L., Sangaletti, S., Consonni, F., Szebeni, G., Morlacchi, S., Totaro, M., et al. (2015). RORC1 Regulates Tumor-Promoting "Emergency" Granulo-Monocytopoiesis. CANCER CELL, 28(2), 253-269 [10.1016/j.ccell.2015.07.006].
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S1535610815002585-main.pdf

Solo gestori archvio

Tipologia: Versione Editoriale
Dimensione 6.85 MB
Formato Adobe PDF
6.85 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10447/203339
Citazioni
  • ???jsp.display-item.citation.pmc??? 72
  • Scopus 151
  • ???jsp.display-item.citation.isi??? 146
social impact