The distribution of inertial particles in turbulent flows is highly non-uniform and is driven by the local dynamics of the turbulent structures of the underlying carrier flow field. In the specific context of dilute particle-laden wall-bounded flows, deposition and resuspension mechanisms are dominated by the interaction between inertial particles and coherent turbulent structures characteristic of the wall region. The macroscopic behavior of these two-phase systems is influenced by particle inertia, which plays a role at the microscale of a single dispersed element. These turbulent structures, which control the turbulent regeneration cycles, are strongly affected by the wall roughness. The effect of the roughness on turbulent transport in dilute suspension has been still poorly investigated. The issue is discussed here by addressing direct numerical simulation (DNS), at friction Reynolds number Ret = 18 0, of a dilute dispersion of heavy particles in a turbulent channel flow, spanning two orders of magnitude of particle inertia. The irregular wall roughness is obtained through the superimposition of four sinusoidal functions of different wavelengths and random amplitudes. We use DNS combined with Lagrangian particle tracking to characterize t h e effect of inertia on particle preferential accumulation, looking at the effect of roughness on particle distribution, by comparing the statistics computed for fluid and particles of different size and observing differences in terms of distribution patterns and preferential sampling.

De Marchis, M., Milici, B., Sardina, G., Napoli, E. (2016). Interaction between turbulent structures and particles in roughened channel. INTERNATIONAL JOURNAL OF MULTIPHASE FLOW, 78, 117-131 [10.1016/j.ijmultiphaseflow.2015.09.011].

Interaction between turbulent structures and particles in roughened channel

NAPOLI, Enrico
2016-01-01

Abstract

The distribution of inertial particles in turbulent flows is highly non-uniform and is driven by the local dynamics of the turbulent structures of the underlying carrier flow field. In the specific context of dilute particle-laden wall-bounded flows, deposition and resuspension mechanisms are dominated by the interaction between inertial particles and coherent turbulent structures characteristic of the wall region. The macroscopic behavior of these two-phase systems is influenced by particle inertia, which plays a role at the microscale of a single dispersed element. These turbulent structures, which control the turbulent regeneration cycles, are strongly affected by the wall roughness. The effect of the roughness on turbulent transport in dilute suspension has been still poorly investigated. The issue is discussed here by addressing direct numerical simulation (DNS), at friction Reynolds number Ret = 18 0, of a dilute dispersion of heavy particles in a turbulent channel flow, spanning two orders of magnitude of particle inertia. The irregular wall roughness is obtained through the superimposition of four sinusoidal functions of different wavelengths and random amplitudes. We use DNS combined with Lagrangian particle tracking to characterize t h e effect of inertia on particle preferential accumulation, looking at the effect of roughness on particle distribution, by comparing the statistics computed for fluid and particles of different size and observing differences in terms of distribution patterns and preferential sampling.
2016
De Marchis, M., Milici, B., Sardina, G., Napoli, E. (2016). Interaction between turbulent structures and particles in roughened channel. INTERNATIONAL JOURNAL OF MULTIPHASE FLOW, 78, 117-131 [10.1016/j.ijmultiphaseflow.2015.09.011].
File in questo prodotto:
File Dimensione Formato  
2016 - Interaction between turbulent structures and particles in roughened channel.pdf

Solo gestori archvio

Descrizione: Articolo completo
Tipologia: Versione Editoriale
Dimensione 9.01 MB
Formato Adobe PDF
9.01 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10447/201998
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 41
  • ???jsp.display-item.citation.isi??? 39
social impact