A new approach to the inverse-scattering technique of Alekseev is presented which permits real-pole soliton solutions of the Ernst equations to be considered. This is achieved by adopting distinct real poles in the scattering matrix and its inverse. For the case in which the electromagnetic field vanishes, some explicit solutions are given using a Minkowski seed metric. The relation with the corresponding soliton solutions that can be constructed using the Belinskiǐ-Zakharov inverse-scattering technique is determined.
Miccichè, S., Griffiths, J. (2000). Soliton solutions with real poles in the Alekseev formulation of the inverse-scattering method. CLASSICAL AND QUANTUM GRAVITY, 17(1), 1-9 [10.1088/0264-9381/17/1/301].
Soliton solutions with real poles in the Alekseev formulation of the inverse-scattering method
MICCICHE', Salvatore;
2000-01-01
Abstract
A new approach to the inverse-scattering technique of Alekseev is presented which permits real-pole soliton solutions of the Ernst equations to be considered. This is achieved by adopting distinct real poles in the scattering matrix and its inverse. For the case in which the electromagnetic field vanishes, some explicit solutions are given using a Minkowski seed metric. The relation with the corresponding soliton solutions that can be constructed using the Belinskiǐ-Zakharov inverse-scattering technique is determined.File | Dimensione | Formato | |
---|---|---|---|
GRpap3.pdf
Solo gestori archvio
Dimensione
152.71 kB
Formato
Adobe PDF
|
152.71 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.