The presence of nitric oxide (NO) synthase and of soluble guanylyl cyclase, the main NO-activated metabolic pathway, has been demonstrated in many cells of the subthalamic nucleus. In this study, the effects induced on the firing of 96 subthalamic neurons by microiontophoretically administering drugs modifying NO neurotransmission were explored in anaesthetized rats. Recorded neurons were classified into regularly and irregularly discharging on the basis of their firing pattern. Nω-nitro-l-arginine methyl ester (L-NAME; a NO synthase inhibitor), 3-morpholino-sydnonimin-hydrocloride (SIN-1; a NO donor), S-nitroso-glutathione (SNOG; another NO donor) and 8-Br-cGMP (a cell-permeable analogue of cGMP, the main second-messenger of NO neurotransmission) were iontophoretically applied while performing single-unit extracellular recordings. The activity of most neurons was influenced in a statistically significant way: in particular, both current-related inhibitory L-NAME-induced effects (20/39 tested cells) and excitatory effects of SIN-1 (25/41 tested neurons), SNOG (19/32 tested cells) and 8-Br-cGMP (13/19 tested neurons) were demonstrated. Neither statistically significant differences between the responses of regularly and irregularly discharging cells, nor specific topographical clustering of responding neurons, were demonstrated. Neurons administered drugs oppositely modulating the NO neurotransmission often displayed responses to only one treatment. We hypothesize that NO neurotransmission could exert a modulatory influence upon subthalamic neurons, with a prevalent excitatory effect. However, in the light of the presence of some responses of opposite sign to the same drug displayed by different subthalamic neurons, more complex effects of NO neurotransmission could be suggested, probably due to interactions with other classical neurotransmitter systems. © The Authors (2006).

SARDO, P., CARLETTI, F., D'AGOSTINO, S., RIZZO, V., FERRARO, G. (2006). Effects of nitric oxide-active drugs on the discharge of subthalamic neurons: microiontophoretic evidence in the rat. EUROPEAN JOURNAL OF NEUROSCIENCE, 24(7), 1995-2002 [10.1111/j.1460-9568.2006.05097.x].

Effects of nitric oxide-active drugs on the discharge of subthalamic neurons: microiontophoretic evidence in the rat.

SARDO, Pierangelo;CARLETTI, Fabio;D'AGOSTINO, Stefania;RIZZO, Valerio;FERRARO, Giuseppe
2006-01-01

Abstract

The presence of nitric oxide (NO) synthase and of soluble guanylyl cyclase, the main NO-activated metabolic pathway, has been demonstrated in many cells of the subthalamic nucleus. In this study, the effects induced on the firing of 96 subthalamic neurons by microiontophoretically administering drugs modifying NO neurotransmission were explored in anaesthetized rats. Recorded neurons were classified into regularly and irregularly discharging on the basis of their firing pattern. Nω-nitro-l-arginine methyl ester (L-NAME; a NO synthase inhibitor), 3-morpholino-sydnonimin-hydrocloride (SIN-1; a NO donor), S-nitroso-glutathione (SNOG; another NO donor) and 8-Br-cGMP (a cell-permeable analogue of cGMP, the main second-messenger of NO neurotransmission) were iontophoretically applied while performing single-unit extracellular recordings. The activity of most neurons was influenced in a statistically significant way: in particular, both current-related inhibitory L-NAME-induced effects (20/39 tested cells) and excitatory effects of SIN-1 (25/41 tested neurons), SNOG (19/32 tested cells) and 8-Br-cGMP (13/19 tested neurons) were demonstrated. Neither statistically significant differences between the responses of regularly and irregularly discharging cells, nor specific topographical clustering of responding neurons, were demonstrated. Neurons administered drugs oppositely modulating the NO neurotransmission often displayed responses to only one treatment. We hypothesize that NO neurotransmission could exert a modulatory influence upon subthalamic neurons, with a prevalent excitatory effect. However, in the light of the presence of some responses of opposite sign to the same drug displayed by different subthalamic neurons, more complex effects of NO neurotransmission could be suggested, probably due to interactions with other classical neurotransmitter systems. © The Authors (2006).
2006
SARDO, P., CARLETTI, F., D'AGOSTINO, S., RIZZO, V., FERRARO, G. (2006). Effects of nitric oxide-active drugs on the discharge of subthalamic neurons: microiontophoretic evidence in the rat. EUROPEAN JOURNAL OF NEUROSCIENCE, 24(7), 1995-2002 [10.1111/j.1460-9568.2006.05097.x].
File in questo prodotto:
File Dimensione Formato  
sardo et al, 2006, ejn.pdf

Solo gestori archvio

Dimensione 288.42 kB
Formato Adobe PDF
288.42 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10447/20107
Citazioni
  • ???jsp.display-item.citation.pmc??? 5
  • Scopus 17
  • ???jsp.display-item.citation.isi??? 17
social impact