The Hsp90 molecule, one of the most abundant heat shock proteins in mammalian cells, maintains homeostasis and prevents stress-induced cellular damage. Hsp90 is expressed under normal conditions at a level of about 1-2 Percent of total proteins, while its expression increases 2-10 fold in cancer cells. The two main constitutively expressed isoforms of Hsp90 are known as Hsp90-alpha and Hsp90-beta, and their upregulation is associated with tumor progression, invasion and formation of metastases, as well as development of drug resistance. The Hsp90 is a key target for many newly established, potent anticancer agents containing Hsp90 N-terminal ATP binding inhibitors, such as geldanamycin, and its analogues 17AAG and 17DMAG. The therapeutic usage of geldanamycin has been limited due to its poor water solubility and severe hepatotoxicity. Therefore, its analogues, including 17AAG, 17DMAG, Tanespimycin and Retaspimycin hydrochloride, with improved pharmacokinetic profiles, have been developed.

Gorska, M., Popowska, U., Sielicka-Dudzin, A., Kuban-Jankowska, A., Sawczuk, W., Knap, N., et al. (2012). Geldanamycin and its derivatives as Hsp90 inhibitors. FRONTIERS IN BIOSCIENCE, 17, 2269-2277.

Geldanamycin and its derivatives as Hsp90 inhibitors

CICERO, Giuseppe;BUCCHIERI, Fabio;
2012-01-01

Abstract

The Hsp90 molecule, one of the most abundant heat shock proteins in mammalian cells, maintains homeostasis and prevents stress-induced cellular damage. Hsp90 is expressed under normal conditions at a level of about 1-2 Percent of total proteins, while its expression increases 2-10 fold in cancer cells. The two main constitutively expressed isoforms of Hsp90 are known as Hsp90-alpha and Hsp90-beta, and their upregulation is associated with tumor progression, invasion and formation of metastases, as well as development of drug resistance. The Hsp90 is a key target for many newly established, potent anticancer agents containing Hsp90 N-terminal ATP binding inhibitors, such as geldanamycin, and its analogues 17AAG and 17DMAG. The therapeutic usage of geldanamycin has been limited due to its poor water solubility and severe hepatotoxicity. Therefore, its analogues, including 17AAG, 17DMAG, Tanespimycin and Retaspimycin hydrochloride, with improved pharmacokinetic profiles, have been developed.
2012
Gorska, M., Popowska, U., Sielicka-Dudzin, A., Kuban-Jankowska, A., Sawczuk, W., Knap, N., et al. (2012). Geldanamycin and its derivatives as Hsp90 inhibitors. FRONTIERS IN BIOSCIENCE, 17, 2269-2277.
File in questo prodotto:
File Dimensione Formato  
gorska 2011.pdf

accesso aperto

Dimensione 470 kB
Formato Adobe PDF
470 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10447/201057
Citazioni
  • ???jsp.display-item.citation.pmc??? 34
  • Scopus 61
  • ???jsp.display-item.citation.isi??? 60
social impact