Let π: X → ℙn−1 be an elliptic fibration obtained by resolving the indeterminacy of the projection of a cubic hypersurface Y of ℙn+1 from a line L not contained in Y . We prove that the Mordell-Weil group of π is finite if and only if the Cox ring of X is finitely generated. We also provide a presentation of the Cox ring of X when it is finitely generated.
Hausen, J., Laface, A., Tironi, A., Ugaglia, L. (2016). On cubic elliptic varieties. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 368(1), 689-708 [10.1090/tran/6353].
On cubic elliptic varieties
UGAGLIA, Luca
2016-01-01
Abstract
Let π: X → ℙn−1 be an elliptic fibration obtained by resolving the indeterminacy of the projection of a cubic hypersurface Y of ℙn+1 from a line L not contained in Y . We prove that the Mordell-Weil group of π is finite if and only if the Cox ring of X is finitely generated. We also provide a presentation of the Cox ring of X when it is finitely generated.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
tran6353.pdf
Solo gestori archvio
Descrizione: Articolo principale
Tipologia:
Versione Editoriale
Dimensione
315.44 kB
Formato
Adobe PDF
|
315.44 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
200793_Ugaglia_ON CUBIC ELLIPTIC VARIETIES.pdf
accesso aperto
Tipologia:
Post-print
Dimensione
480.95 kB
Formato
Adobe PDF
|
480.95 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.