Using the framework of nonstandard analysis, I find the discretized version of the Euler-Lagrange equation for classical dynamical systems and discuss the existence of an extremum for a given functional in variational calculus. Some results related to the Cauchy existence theorem are obtained and discussed with various examples.

Bagarello, F. (1999). Nonstandard variational calculus with applications to classical mechanics. 1. An existence criterion. INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 38(5), 1569-1592 [10.1023/A:1026661620598].

Nonstandard variational calculus with applications to classical mechanics. 1. An existence criterion

BAGARELLO, Fabio
1999-01-01

Abstract

Using the framework of nonstandard analysis, I find the discretized version of the Euler-Lagrange equation for classical dynamical systems and discuss the existence of an extremum for a given functional in variational calculus. Some results related to the Cauchy existence theorem are obtained and discussed with various examples.
1999
Bagarello, F. (1999). Nonstandard variational calculus with applications to classical mechanics. 1. An existence criterion. INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 38(5), 1569-1592 [10.1023/A:1026661620598].
File in questo prodotto:
File Dimensione Formato  
Bagarello1999_Article_NonstandardVariationalCalculus.pdf

Solo gestori archvio

Dimensione 202.21 kB
Formato Adobe PDF
202.21 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10447/198801
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 4
social impact