It is shown that the obvious generalization of the Pettis integral of a multifunction obtained by replacing the Lebesgue integrability of the support functions by the Kurzweil--Henstock integrability, produces an integral which can be described -- in case of multifunctions with (weakly) compact convex values -- in terms of the Pettis set-valued integral.
DI PIAZZA L, MUSIAL K (2005). Set valued Kurzweil-Henstock-Pettis integral. SET-VALUED ANALYSIS, 13(2), 167-179 [10.1007/s11228-004-0934-0].
Set valued Kurzweil-Henstock-Pettis integral
DI PIAZZA, Luisa;
2005-01-01
Abstract
It is shown that the obvious generalization of the Pettis integral of a multifunction obtained by replacing the Lebesgue integrability of the support functions by the Kurzweil--Henstock integrability, produces an integral which can be described -- in case of multifunctions with (weakly) compact convex values -- in terms of the Pettis set-valued integral.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
Setvalued Anal.pdf
Solo gestori archvio
Dimensione
220.25 kB
Formato
Adobe PDF
|
220.25 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.