In this paper, we summarize the results of an extensive investigation on the properties of MOS-type light-emitting devices based on silicon nanostructures. The performances of crystalline, amorphous, and Er-doped Si nanostructures are presented and compared. We show that all devices are extremely stable and robust, resulting in an intense room temperature electroluminescence (EL) at around 900 nm or at 1.54 μm. Amorphous nanoclusters are more conductive than the crystalline counterpart. In contrast, nonradiative processes seem to be more efficient for amorphous clusters resulting in a lower quantum efficiency. Erbium doping results in the presence of an intense EL at 1.54 μm with a concomitant disappearance of the 900-nm emission. This suggests that under electrical pumping Er is excited through an efficient energy transfer from the silicon clusters which hence become dark. We have identified an Auger de-excitation of Er with trapped carriers as the main process competing with radiative emission and limiting EL efficiency. This process is particularly severe in presence of unbalanced carrier injection (electrons versus holes) and can be controlled in properly designed structures. These data are presented and their implications are discussed. © 2006 IEEE.

Iacona, F., Irrera, A., Franzò, G., Pacifici, D., Crupi, I., Miritello, M., et al. (2006). Silicon-based light-emitting devices: Properties and applications of crystalline, amorphous and er-doped nanoclusters. IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, 12(6), 1596-1605 [10.1109/JSTQE.2006.880605].

Silicon-based light-emitting devices: Properties and applications of crystalline, amorphous and er-doped nanoclusters

Crupi, Isodiana;
2006-01-01

Abstract

In this paper, we summarize the results of an extensive investigation on the properties of MOS-type light-emitting devices based on silicon nanostructures. The performances of crystalline, amorphous, and Er-doped Si nanostructures are presented and compared. We show that all devices are extremely stable and robust, resulting in an intense room temperature electroluminescence (EL) at around 900 nm or at 1.54 μm. Amorphous nanoclusters are more conductive than the crystalline counterpart. In contrast, nonradiative processes seem to be more efficient for amorphous clusters resulting in a lower quantum efficiency. Erbium doping results in the presence of an intense EL at 1.54 μm with a concomitant disappearance of the 900-nm emission. This suggests that under electrical pumping Er is excited through an efficient energy transfer from the silicon clusters which hence become dark. We have identified an Auger de-excitation of Er with trapped carriers as the main process competing with radiative emission and limiting EL efficiency. This process is particularly severe in presence of unbalanced carrier injection (electrons versus holes) and can be controlled in properly designed structures. These data are presented and their implications are discussed. © 2006 IEEE.
2006
Settore ING-INF/01 - Elettronica
Settore FIS/03 - Fisica Della Materia
Iacona, F., Irrera, A., Franzò, G., Pacifici, D., Crupi, I., Miritello, M., et al. (2006). Silicon-based light-emitting devices: Properties and applications of crystalline, amorphous and er-doped nanoclusters. IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, 12(6), 1596-1605 [10.1109/JSTQE.2006.880605].
File in questo prodotto:
File Dimensione Formato  
2006 IEEE JSTQE.pdf

Solo gestori archvio

Dimensione 363.14 kB
Formato Adobe PDF
363.14 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10447/179536
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 35
  • ???jsp.display-item.citation.isi??? 25
social impact