The notion of completely positive invariant conjugate-bilinear map in a partial *-algebra is introduced and a generalized Stinespring theorem is proven. Applications to the existence of integrable extensions of *-representations of commutative, locally convex quasi*-algebras are also discussed.
BAGARELLO F, INOUE A, TRAPANI C (2007). Completely positive invariant conjugate-bilinear maps on partial *-algebras. ZEITSCHRIFT FUR ANALYSIS UND IHRE ANWENDUNGEN, 26, 313-330 [10.4171/ZAA/1326].
Completely positive invariant conjugate-bilinear maps on partial *-algebras
BAGARELLO, Fabio;TRAPANI, Camillo
2007-01-01
Abstract
The notion of completely positive invariant conjugate-bilinear map in a partial *-algebra is introduced and a generalized Stinespring theorem is proven. Applications to the existence of integrable extensions of *-representations of commutative, locally convex quasi*-algebras are also discussed.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
2007InoTra_ZAIA.pdf
Solo gestori archvio
Dimensione
188.35 kB
Formato
Adobe PDF
|
188.35 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.