Properties of a Henstock type integral defined by means of a differential basis generated by P-adic paths ae studied. It is proved that this integral solves the problem of coefficients reconstruction by using generalized Fourier formulas for a series over multiplivative systems.

SKVORTSOV V, TULONE F (2004). Generalized Henstock integrals in the theory of series in multiplicative systems. VESTNIK MOSKOVSKOGO UNIVERSITETA SERIYA 1 MATEMATIKA MEKHANIKA, 78, no. 2, 7-11.

Generalized Henstock integrals in the theory of series in multiplicative systems

TULONE, Francesco
2004-01-01

Abstract

Properties of a Henstock type integral defined by means of a differential basis generated by P-adic paths ae studied. It is proved that this integral solves the problem of coefficients reconstruction by using generalized Fourier formulas for a series over multiplivative systems.
2004
SKVORTSOV V, TULONE F (2004). Generalized Henstock integrals in the theory of series in multiplicative systems. VESTNIK MOSKOVSKOGO UNIVERSITETA SERIYA 1 MATEMATIKA MEKHANIKA, 78, no. 2, 7-11.
File in questo prodotto:
File Dimensione Formato  
Moscow Bulletin 2004.pdf

Solo gestori archvio

Dimensione 370.27 kB
Formato Adobe PDF
370.27 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10447/17520
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? ND
social impact