The experimental investigation of the base-catalyzed rearrangements of 3-acylamino-1,2,4-oxadiazoles evidenced a new reaction pathway which competes with the well-known ring-degenerate Boulton- Katritzky rearrangement (BKR). The new reaction consists of a one-atom side-chain rearrangement that is base-activated, occurs at a higher temperature than the BKR, and irreversibly leads to the corresponding 2-acylamino-1,3,4-oxadiazoles. An extensive DFT study is reported to elucidate the proposed reaction mechanism and to compare the three possible inherent routes: (i) the reversible three-atom side-chain ring-degenerate BKR, (ii) the ring contraction-ring expansion route (RCRE), and (iii) the one-atom side-chain rearrangement. The results of the computational investigation point out that the latter route is kinetically preferred over the RCRE and can be considered as the ground-state analogue of a previously proposed C(3)-N(2) migration-nucleophilic attack-cyclization (MNAC) photochemically activated pathway. The MNAC consists of the formation of a diazirine intermediate, involving the exocyclic nitrogen, that eventually evolves into a carbodiimide intermediate (migration); the latter undergoes a single intramolecular nucleophilic attack-cyclization step leading to the final 2-acylamino-1,3,4-oxadiazole.
PACE, A., PIBIRI, I., PALUMBO PICCIONELLO, A., BUSCEMI, S., VIVONA, N., BARONE, G. (2007). Experimental and DFT studies on competitive heterocyclic rearrangements. part 2: A one-atom side-chain versus the classic three-atom side-chain (Boulton-Katritzky) ring rearrangement of 3-acylamino-1,2,4-oxadiazoles. JOURNAL OF ORGANIC CHEMISTRY, 72(20), 7656-7666 [10.1021/jo701306t].
Experimental and DFT studies on competitive heterocyclic rearrangements. part 2: A one-atom side-chain versus the classic three-atom side-chain (Boulton-Katritzky) ring rearrangement of 3-acylamino-1,2,4-oxadiazoles
PACE, Andrea;PIBIRI, Ivana;PALUMBO PICCIONELLO, Antonio;BUSCEMI, Silvestre;VIVONA, Nicolo';BARONE, Giampaolo
2007-01-01
Abstract
The experimental investigation of the base-catalyzed rearrangements of 3-acylamino-1,2,4-oxadiazoles evidenced a new reaction pathway which competes with the well-known ring-degenerate Boulton- Katritzky rearrangement (BKR). The new reaction consists of a one-atom side-chain rearrangement that is base-activated, occurs at a higher temperature than the BKR, and irreversibly leads to the corresponding 2-acylamino-1,3,4-oxadiazoles. An extensive DFT study is reported to elucidate the proposed reaction mechanism and to compare the three possible inherent routes: (i) the reversible three-atom side-chain ring-degenerate BKR, (ii) the ring contraction-ring expansion route (RCRE), and (iii) the one-atom side-chain rearrangement. The results of the computational investigation point out that the latter route is kinetically preferred over the RCRE and can be considered as the ground-state analogue of a previously proposed C(3)-N(2) migration-nucleophilic attack-cyclization (MNAC) photochemically activated pathway. The MNAC consists of the formation of a diazirine intermediate, involving the exocyclic nitrogen, that eventually evolves into a carbodiimide intermediate (migration); the latter undergoes a single intramolecular nucleophilic attack-cyclization step leading to the final 2-acylamino-1,3,4-oxadiazole.File | Dimensione | Formato | |
---|---|---|---|
jo701306t.pdf
Solo gestori archvio
Dimensione
303.71 kB
Formato
Adobe PDF
|
303.71 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.