The conditional intensity function of a space-time branching model is defined by the sum of two main components: the long-run term intensity and short-run term one. Their simultaneous estimation is a complex issue that usually requires the use of hard computational techniques. This paper deals with a new mixed estimation approach for a particular space-time branching model, the Epidemic Type Aftershock Sequence model. This approach uses a simultaneous estimation of the different model components, alternating a parametric step for estimating the induced component by Maximum Likelihood and a non-parametric estimation step, for the background intensity, by FLP (Forward Predictive Likelihood).Moreover, proper graphical tools for diagnostics have been developed and collected, together with the used implemented code in a R package here introduced, named etasFLP.

Adelfio, G., Chiodi, M. (2015). FLP estimation of semi-parametric models for space-time point processes and diagnostic tools. SPATIAL STATISTICS, 14(2), 119-132 [10.1016/j.spasta.2015.06.004].

FLP estimation of semi-parametric models for space-time point processes and diagnostic tools

ADELFIO, Giada
;
CHIODI, Marcello
2015-01-01

Abstract

The conditional intensity function of a space-time branching model is defined by the sum of two main components: the long-run term intensity and short-run term one. Their simultaneous estimation is a complex issue that usually requires the use of hard computational techniques. This paper deals with a new mixed estimation approach for a particular space-time branching model, the Epidemic Type Aftershock Sequence model. This approach uses a simultaneous estimation of the different model components, alternating a parametric step for estimating the induced component by Maximum Likelihood and a non-parametric estimation step, for the background intensity, by FLP (Forward Predictive Likelihood).Moreover, proper graphical tools for diagnostics have been developed and collected, together with the used implemented code in a R package here introduced, named etasFLP.
2015
Adelfio, G., Chiodi, M. (2015). FLP estimation of semi-parametric models for space-time point processes and diagnostic tools. SPATIAL STATISTICS, 14(2), 119-132 [10.1016/j.spasta.2015.06.004].
File in questo prodotto:
File Dimensione Formato  
spatstat-adelfio-rev3.pdf

Solo gestori archvio

Dimensione 8.43 MB
Formato Adobe PDF
8.43 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
1-s2.0-S2211675315000524-main.pdf

Solo gestori archvio

Tipologia: Versione Editoriale
Dimensione 1.63 MB
Formato Adobe PDF
1.63 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10447/151662
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 20
  • ???jsp.display-item.citation.isi??? 19
social impact