In a bounded domain Ω, we consider a positive solution of the problem Δu+f(u)=0 in Ω, u=0 on ∂Ω, where f:ℝ→ℝ is a locally Lipschitz continuous function. Under sufficient conditions on Ω (for instance, if Ω is convex), we show that ∂Ω is contained in a spherical annulus of radii ri<re, where re−ri≤C[uν]α∂Ω for some constants C>0 and α∈(0,1]. Here, [uν]∂Ω is the Lipschitz seminorm on ∂Ω of the normal derivative of u. This result improves to H\"older stability the logarithmic estimate obtained in [1] for Serrin's overdetermined problem. It also extends to a large class of semilinear equations the H\"older estimate obtained in [6] for the case of torsional rigidity (f≡1) by means of integral identities. The proof hinges on ideas contained in [1] and uses Carleson-type estimates and improved Harnack inequalities in cones.

Ciraolo, G., Magnanini, R., Vespri, V. (2016). Hölder stability for Serrin’s overdetermined problem. ANNALI DI MATEMATICA PURA ED APPLICATA, 195(4), 1333-1345 [10.1007/s10231-015-0518-7].

Hölder stability for Serrin’s overdetermined problem

CIRAOLO, Giulio;
2016-01-01

Abstract

In a bounded domain Ω, we consider a positive solution of the problem Δu+f(u)=0 in Ω, u=0 on ∂Ω, where f:ℝ→ℝ is a locally Lipschitz continuous function. Under sufficient conditions on Ω (for instance, if Ω is convex), we show that ∂Ω is contained in a spherical annulus of radii ri0 and α∈(0,1]. Here, [uν]∂Ω is the Lipschitz seminorm on ∂Ω of the normal derivative of u. This result improves to H\"older stability the logarithmic estimate obtained in [1] for Serrin's overdetermined problem. It also extends to a large class of semilinear equations the H\"older estimate obtained in [6] for the case of torsional rigidity (f≡1) by means of integral identities. The proof hinges on ideas contained in [1] and uses Carleson-type estimates and improved Harnack inequalities in cones.
2016
Ciraolo, G., Magnanini, R., Vespri, V. (2016). Hölder stability for Serrin’s overdetermined problem. ANNALI DI MATEMATICA PURA ED APPLICATA, 195(4), 1333-1345 [10.1007/s10231-015-0518-7].
File in questo prodotto:
File Dimensione Formato  
17 - Ciraolo_Magnanini_Vespri_Annali_2015.pdf

Solo gestori archvio

Descrizione: "articolo principale"
Dimensione 800.07 kB
Formato Adobe PDF
800.07 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10447/150506
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 22
  • ???jsp.display-item.citation.isi??? 25
social impact