This work investigates the flexural behavior of a composite sandwich made of flax fibers reinforced skin facings and an agglomerated cork core, to be employed as an eco-friendly solution for the making of structural components of small sailing boats. An experimental mechanical characterization of the strength and stiffness flexural behavior of the proposed sandwich is carried out, providing a comparison of performances from three implemented assembling techniques: hand-lay-up, vacuum bagging and resin infusion. Sandwich beams have been tested under three point bending (TPB) at various span lengths. A procedure is also proposed and implemented to consider the potential influence of the local elastic indentation in the experimental evaluation of the flexural stiffness. This procedure is based on the analytical solution of an indented beam resting on a fully backed Winkler foundation.
Mancuso, A., Pitarresi, G., Tumino, D. (2015). Mechanical Behaviour of a Green Sandwich Made of Flax Reinforced Polymer Facings and Cork Core. PROCEDIA ENGINEERING, 109, 144-153 [10.1016/j.proeng.2015.06.225].
Mechanical Behaviour of a Green Sandwich Made of Flax Reinforced Polymer Facings and Cork Core
MANCUSO, Antonio;PITARRESI, Giuseppe;
2015-01-01
Abstract
This work investigates the flexural behavior of a composite sandwich made of flax fibers reinforced skin facings and an agglomerated cork core, to be employed as an eco-friendly solution for the making of structural components of small sailing boats. An experimental mechanical characterization of the strength and stiffness flexural behavior of the proposed sandwich is carried out, providing a comparison of performances from three implemented assembling techniques: hand-lay-up, vacuum bagging and resin infusion. Sandwich beams have been tested under three point bending (TPB) at various span lengths. A procedure is also proposed and implemented to consider the potential influence of the local elastic indentation in the experimental evaluation of the flexural stiffness. This procedure is based on the analytical solution of an indented beam resting on a fully backed Winkler foundation.File | Dimensione | Formato | |
---|---|---|---|
1-s2.0-S187770581501187X-main.pdf
accesso aperto
Dimensione
1.84 MB
Formato
Adobe PDF
|
1.84 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.