We adopt an operatorial method, based on creation, annihilation and number operators, to describe one or two populations mutually interacting and moving in a two-dimensional region. In particular, we discuss how the two populations, contained in a certain two-dimensional region with a non-trivial topology, react when some alarm occurs. We consider the cases of both low and high densities of the populations, and discuss what is changing as the strength of the interaction increases. We also analyze what happens when the region has either a single exit or two ways out.

Bagarello, F., Gargano, F., & Oliveri, F. (2015). A phenomenological operator description of dynamics of crowds: Escape strategies. APPLIED MATHEMATICAL MODELLING, 39(8), 2276-2294 [10.1016/j.apm.2014.10.038].

A phenomenological operator description of dynamics of crowds: Escape strategies

BAGARELLO, Fabio
;
GARGANO, Francesco
;
2015

Abstract

We adopt an operatorial method, based on creation, annihilation and number operators, to describe one or two populations mutually interacting and moving in a two-dimensional region. In particular, we discuss how the two populations, contained in a certain two-dimensional region with a non-trivial topology, react when some alarm occurs. We consider the cases of both low and high densities of the populations, and discuss what is changing as the strength of the interaction increases. We also analyze what happens when the region has either a single exit or two ways out.
Settore MAT/07 - Fisica Matematica
Bagarello, F., Gargano, F., & Oliveri, F. (2015). A phenomenological operator description of dynamics of crowds: Escape strategies. APPLIED MATHEMATICAL MODELLING, 39(8), 2276-2294 [10.1016/j.apm.2014.10.038].
File in questo prodotto:
File Dimensione Formato  
Bagarello_Gargano_oliveri.pdf

Solo gestori archvio

Tipologia: Versione Editoriale
Dimensione 2.05 MB
Formato Adobe PDF
2.05 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
BGO2015_submitted.pdf

Solo gestori archvio

Descrizione: Versione sottomessa ed accettata dell'editore
Tipologia: Post-print
Dimensione 944.18 kB
Formato Adobe PDF
944.18 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/10447/147438
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 26
  • ???jsp.display-item.citation.isi??? 21
social impact