The mechanisms imposing the Dorsal/Ventral (DV) polarity of the early sea urchin embryo consist of a combination of inherited maternal information and inductive interactions among blastomeres. Old and recent studies suggest that a key molecular landmark of DV polarization is the expression of nodal on the future ventral side, in apparent contrast with other metazoan embryos, where nodal is expressed dorsally. A subtle maternally-inherited redox anisotropy, plus some maternal factors such as SoxB1, Univin, and p38-MAPK have been identified as inputs driving the spatially asymmetric transcription of nodal. However, all the mentioned factors are broadly distributed in the embryo as early as nodal transcription occurs, suggesting that repression of the gene in non-ventral territories depends upon negative regulators. Among these, the Hbox12 homeodomain-containing repressor is expressed by prospective dorsal cells, where it acts as a dorsal-specific negative modulator of the p38-MAPK activity. This review provides an overview of the molecular mechanisms governing the establishment of DV polarity in sea urchins, focusing on events taking place in the early embryo. Altogether, these findings provide a framework for future studies aimed to unravel the inceptive mechanisms involved in the DV symmetry breaking.

Cavalieri, V., Spinelli, G. (2015). Symmetry Breaking and Establishment of Dorsal/Ventral Polarity in the Early Sea Urchin Embryo. SYMMETRY(7), 1721-1733 [10.3390/sym7041721].

Symmetry Breaking and Establishment of Dorsal/Ventral Polarity in the Early Sea Urchin Embryo

CAVALIERI, Vincenzo;SPINELLI, Giovanni
2015-01-01

Abstract

The mechanisms imposing the Dorsal/Ventral (DV) polarity of the early sea urchin embryo consist of a combination of inherited maternal information and inductive interactions among blastomeres. Old and recent studies suggest that a key molecular landmark of DV polarization is the expression of nodal on the future ventral side, in apparent contrast with other metazoan embryos, where nodal is expressed dorsally. A subtle maternally-inherited redox anisotropy, plus some maternal factors such as SoxB1, Univin, and p38-MAPK have been identified as inputs driving the spatially asymmetric transcription of nodal. However, all the mentioned factors are broadly distributed in the embryo as early as nodal transcription occurs, suggesting that repression of the gene in non-ventral territories depends upon negative regulators. Among these, the Hbox12 homeodomain-containing repressor is expressed by prospective dorsal cells, where it acts as a dorsal-specific negative modulator of the p38-MAPK activity. This review provides an overview of the molecular mechanisms governing the establishment of DV polarity in sea urchins, focusing on events taking place in the early embryo. Altogether, these findings provide a framework for future studies aimed to unravel the inceptive mechanisms involved in the DV symmetry breaking.
2015
Cavalieri, V., Spinelli, G. (2015). Symmetry Breaking and Establishment of Dorsal/Ventral Polarity in the Early Sea Urchin Embryo. SYMMETRY(7), 1721-1733 [10.3390/sym7041721].
File in questo prodotto:
File Dimensione Formato  
Cavalieri 2015.pdf

accesso aperto

Descrizione: articolo
Dimensione 10.55 MB
Formato Adobe PDF
10.55 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10447/147090
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 7
social impact