The utilization of poly(vinylchloride) (PVC) and poly(vinylidenefluoride) (PVDF) as macroinitiators for atom transfer radical polymerization (ATRP) of hydroxyethylmethacrylate (HEMA) was studied performing electroanalytical investigations and “grafting from” experiments in order to achieve information on the possibility of modifying such commercial polymers by this controlled free radical polymerization technique. This study was performed changing various operating parameters such as the nature of the copper salt, the ligand, the solvent, the temperature and the reaction time. Electroanalytical data suggest that PVC can be easily activated by both CuCl/ Tris(2-pyridylmethyl)amine (TPMA) and CuCl/ Tris[2- (dimethylamino)ethyl]amine (Me6TREN), two catalytic systems widely adopted for ATRP reactions, in a wide range of operating conditions. PVDF is more difficult to be activated, due to the higher strength of the C-F bond. In particular, the utilization of high temperature and of a more reductant redox couple such as Cu(I)Me6TREN/Cu(II)Me6TREN was needed to achieve a significant degree of grafting

Lanzalaco, S., Galia, A., Lazzano, F., Mauro, R., Scialdone, O. (2015). Utilization of Poly(vinylchloride) and Poly(vinylidenefluoride) as Macroinitiators for ATRP Polymerization of Hydroxyethylmethacrylate. Electroanalytical and Graft-Copolymerization Studies. JOURNAL OF POLYMER SCIENCE. PART A, POLYMER CHEMISTRY, 53, 2524-2536 [10.1002/pola.27717].

Utilization of Poly(vinylchloride) and Poly(vinylidenefluoride) as Macroinitiators for ATRP Polymerization of Hydroxyethylmethacrylate. Electroanalytical and Graft-Copolymerization Studies

LANZALACO, Sonia;GALIA, Alessandro;SCIALDONE, Onofrio
2015-01-01

Abstract

The utilization of poly(vinylchloride) (PVC) and poly(vinylidenefluoride) (PVDF) as macroinitiators for atom transfer radical polymerization (ATRP) of hydroxyethylmethacrylate (HEMA) was studied performing electroanalytical investigations and “grafting from” experiments in order to achieve information on the possibility of modifying such commercial polymers by this controlled free radical polymerization technique. This study was performed changing various operating parameters such as the nature of the copper salt, the ligand, the solvent, the temperature and the reaction time. Electroanalytical data suggest that PVC can be easily activated by both CuCl/ Tris(2-pyridylmethyl)amine (TPMA) and CuCl/ Tris[2- (dimethylamino)ethyl]amine (Me6TREN), two catalytic systems widely adopted for ATRP reactions, in a wide range of operating conditions. PVDF is more difficult to be activated, due to the higher strength of the C-F bond. In particular, the utilization of high temperature and of a more reductant redox couple such as Cu(I)Me6TREN/Cu(II)Me6TREN was needed to achieve a significant degree of grafting
2015
Lanzalaco, S., Galia, A., Lazzano, F., Mauro, R., Scialdone, O. (2015). Utilization of Poly(vinylchloride) and Poly(vinylidenefluoride) as Macroinitiators for ATRP Polymerization of Hydroxyethylmethacrylate. Electroanalytical and Graft-Copolymerization Studies. JOURNAL OF POLYMER SCIENCE. PART A, POLYMER CHEMISTRY, 53, 2524-2536 [10.1002/pola.27717].
File in questo prodotto:
File Dimensione Formato  
Utilization of Poly(vinylchloride) and Poly(vinylidenefluoride)_JPS.pdf

Solo gestori archvio

Dimensione 873.5 kB
Formato Adobe PDF
873.5 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10447/147059
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 10
  • ???jsp.display-item.citation.isi??? 10
social impact