The cytotoxic activity against rabbit erythrocytes (RE) and human K562 tumor cells by Styela plicata hemocytes was significantly related to the phenoloxidase (PO) which converts phenols to quinone and initiates the melanogenic pathway. The effector hemocyte population, separated in a Percoll density gradient band, enriched in a granulocyte type named "morula cells", was examined with RE in a hemocyte cytotoxic assay and plaque forming cell assay. Inhibition experiments with the copper chelating agents 1-phenyl-2-thiourea and tropolone, the substrate analogue sodium benzoate and sodium ascorbate support the notion that hemocyte cytotoxic activity is a PO-dependent mechanism. Treatments of hemocytes with the antioxidant enzymes, superoxide dismutase and catalase rule out oxy radicals produced by the melanogenic process as responsible of erythrolysis. Such a result suggests that quinone compounds derived from the melanogenic pathway might be the cytotoxic molecules. The PO-dependent anti-RE activity was also shown in a plaque forming assay in which "morula cells", containing polyphenols and PO, were identified as cytotoxic.

Cammarata, M., Arizza, V., Parrinello, N., Candore, G., Caruso, C. (1997). Phenoloxidase-dependent cytotoxic mechanism in ascidian (Styela plicata) hemocytes active against erythrocytes and K562 tumor cells. EUROPEAN JOURNAL OF CELL BIOLOGY, 74(3), 302-7.

Phenoloxidase-dependent cytotoxic mechanism in ascidian (Styela plicata) hemocytes active against erythrocytes and K562 tumor cells

CAMMARATA, Matteo;ARIZZA, Vincenzo;PARRINELLO, Nicolo';CANDORE, Giuseppina;CARUSO, Calogero
1997-01-01

Abstract

The cytotoxic activity against rabbit erythrocytes (RE) and human K562 tumor cells by Styela plicata hemocytes was significantly related to the phenoloxidase (PO) which converts phenols to quinone and initiates the melanogenic pathway. The effector hemocyte population, separated in a Percoll density gradient band, enriched in a granulocyte type named "morula cells", was examined with RE in a hemocyte cytotoxic assay and plaque forming cell assay. Inhibition experiments with the copper chelating agents 1-phenyl-2-thiourea and tropolone, the substrate analogue sodium benzoate and sodium ascorbate support the notion that hemocyte cytotoxic activity is a PO-dependent mechanism. Treatments of hemocytes with the antioxidant enzymes, superoxide dismutase and catalase rule out oxy radicals produced by the melanogenic process as responsible of erythrolysis. Such a result suggests that quinone compounds derived from the melanogenic pathway might be the cytotoxic molecules. The PO-dependent anti-RE activity was also shown in a plaque forming assay in which "morula cells", containing polyphenols and PO, were identified as cytotoxic.
1997
Settore BIO/05 - Zoologia
Settore BIO/06 - Anatomia Comparata E Citologia
Cammarata, M., Arizza, V., Parrinello, N., Candore, G., Caruso, C. (1997). Phenoloxidase-dependent cytotoxic mechanism in ascidian (Styela plicata) hemocytes active against erythrocytes and K562 tumor cells. EUROPEAN JOURNAL OF CELL BIOLOGY, 74(3), 302-7.
File in questo prodotto:
File Dimensione Formato  
17 - 17 EJCB 1997 Styela PO.pdf

Solo gestori archvio

Dimensione 4.59 MB
Formato Adobe PDF
4.59 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10447/146419
Citazioni
  • ???jsp.display-item.citation.pmc??? 2
  • Scopus 44
  • ???jsp.display-item.citation.isi??? 40
social impact