Let $(\mathcal{X},d)$ be a metric space, $\mathcal{A}$ and $\mathcal{B}$ be two non-empty subsets of $\mathcal{X}$ and $\mathcal{S},\mathcal{T}: \mathcal{A} \to \mathcal{B}$ be two non-self mappings. In view of the fact that, given any point $x \in \mathcal{A}$, the distances between $x$ and $\mathcal{S}x$ and between $x$ and $\mathcal{T}x$ are at least $d(\mathcal{A}, \mathcal{B}),$ which is the absolute infimum of $d(x, \mathcal{S} x)$ and $d(x, \mathcal{T} x)$, a common best proximity point theorem affirms the global minimum of both the functions $x \to d(x, \mathcal{S}x)$ and $x \to d(x, \mathcal{T}x)$ by imposing the common approximate solution of the equations $\mathcal{S}x = x$ and $\mathcal{T} x = x$ to satisfy the condition $d(x, \mathcal{S}x) = d(x, \mathcal{T} x) = d(\mathcal{A, B}).$ In this paper, we present two new types of proximal contractions and develop a common best proximity point theorem for proximally commuting non-self mappings, thereby yielding the common optimal approximate solution of some fixed point equations when there is no common solution.
Nashine, H.K., Vetro, C. (2015). Common best proximity points and global optimal approximate solutions for new types of proximal contractions. JOURNAL OF NONLINEAR AND CONVEX ANALYSIS, 16(5), 919-930.
Common best proximity points and global optimal approximate solutions for new types of proximal contractions
VETRO, Calogero
2015-01-01
Abstract
Let $(\mathcal{X},d)$ be a metric space, $\mathcal{A}$ and $\mathcal{B}$ be two non-empty subsets of $\mathcal{X}$ and $\mathcal{S},\mathcal{T}: \mathcal{A} \to \mathcal{B}$ be two non-self mappings. In view of the fact that, given any point $x \in \mathcal{A}$, the distances between $x$ and $\mathcal{S}x$ and between $x$ and $\mathcal{T}x$ are at least $d(\mathcal{A}, \mathcal{B}),$ which is the absolute infimum of $d(x, \mathcal{S} x)$ and $d(x, \mathcal{T} x)$, a common best proximity point theorem affirms the global minimum of both the functions $x \to d(x, \mathcal{S}x)$ and $x \to d(x, \mathcal{T}x)$ by imposing the common approximate solution of the equations $\mathcal{S}x = x$ and $\mathcal{T} x = x$ to satisfy the condition $d(x, \mathcal{S}x) = d(x, \mathcal{T} x) = d(\mathcal{A, B}).$ In this paper, we present two new types of proximal contractions and develop a common best proximity point theorem for proximally commuting non-self mappings, thereby yielding the common optimal approximate solution of some fixed point equations when there is no common solution.File | Dimensione | Formato | |
---|---|---|---|
2015_JNCA_NashineVetro.pdf
Solo gestori archvio
Descrizione: Articolo principale
Dimensione
150.71 kB
Formato
Adobe PDF
|
150.71 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.