Fish species have attracted considerable interest in studies assessing biological responses to environmental contaminants. In this study, the attention has been focussed on fishbone of selected fish species from a highly polluted marine area, Augusta Bay (Italy, Central Mediterranean) to evaluate if toxicant elements had an effect on the mineralogical structure of bones, although macroscopic deformations were not evident. In particular, an attempt was made to evaluate if bone mineral features, such as crystallinity, mineral maturity and carbonate/phosphate mineral content, determined by XR-Diffraction and FT-IR Spectroscopy, suffered negative effects due to trace element levels in fishbone, detected by ICP-OES. Results confirmed the reliability of the use of diffractometric and spectroscopic techniques to assess the degree of crystallinity and the mineral maturity in fishbone. In addition, in highly polluted areas, Hg and Cr contamination induced a process of premature aging of fishbone, altering its biochemical and mineral contents.
Scopelliti, G., Di Leonardo, R., Tramati, C., Mazzola, A., Vizzini, S. (2015). Premature aging in bone of fish from a highly polluted marine area. MARINE POLLUTION BULLETIN, 97, 333-341 [10.1016/j.marpolbul.2015.05.069].
Premature aging in bone of fish from a highly polluted marine area
SCOPELLITI, Giovanna;DI LEONARDO, Rossella;TRAMATI, Cecilia Doriana;MAZZOLA, Antonio;VIZZINI, Salvatrice
2015-01-01
Abstract
Fish species have attracted considerable interest in studies assessing biological responses to environmental contaminants. In this study, the attention has been focussed on fishbone of selected fish species from a highly polluted marine area, Augusta Bay (Italy, Central Mediterranean) to evaluate if toxicant elements had an effect on the mineralogical structure of bones, although macroscopic deformations were not evident. In particular, an attempt was made to evaluate if bone mineral features, such as crystallinity, mineral maturity and carbonate/phosphate mineral content, determined by XR-Diffraction and FT-IR Spectroscopy, suffered negative effects due to trace element levels in fishbone, detected by ICP-OES. Results confirmed the reliability of the use of diffractometric and spectroscopic techniques to assess the degree of crystallinity and the mineral maturity in fishbone. In addition, in highly polluted areas, Hg and Cr contamination induced a process of premature aging of fishbone, altering its biochemical and mineral contents.File | Dimensione | Formato | |
---|---|---|---|
2015_MPB.pdf
Solo gestori archvio
Dimensione
864.53 kB
Formato
Adobe PDF
|
864.53 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.