This paper reports on the synthesis and physico-chemical, mechanical, and biological characterization of two sets of poly(amidoamine) (PAA) hydrogels with potential as scaffolds for in vivo peripheral nerve regeneration. They are obtained by polyaddition of piperazine with N,N′-methylenebis(acrylamide) or 1,4-bis(acryloyl)piperazine with 1,2-diaminoethane as cross-linking agent and exhibit a combination of relevant properties, such as mechanical strength, biocompatibility, biodegradability, ability to induce adhesion and proliferation of Schwann cells (SCs) preserving their viability. Moreover, the most promising hydrogels, that is those deriving from 1,4-bis(acryloyl)piperazine, allow the in vitro growth of the sensitive neurons of the dorsal root ganglia, thus getting around a critical point in the design of conduits for nerve regeneration. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Mauro, N., Manfredi, A., Ranucci, E., Procacci, P., Laus, M., Antonioli, D., et al. (2013). Degradable Poly(amidoamine) Hydrogels as Scaffolds for In Vitro Culturing of Peripheral Nervous System Cells. MACROMOLECULAR BIOSCIENCE, 13(3), 332-347 [10.1002/mabi.201200354].

Degradable Poly(amidoamine) Hydrogels as Scaffolds for In Vitro Culturing of Peripheral Nervous System Cells

Mauro, Nicolò;
2013-01-01

Abstract

This paper reports on the synthesis and physico-chemical, mechanical, and biological characterization of two sets of poly(amidoamine) (PAA) hydrogels with potential as scaffolds for in vivo peripheral nerve regeneration. They are obtained by polyaddition of piperazine with N,N′-methylenebis(acrylamide) or 1,4-bis(acryloyl)piperazine with 1,2-diaminoethane as cross-linking agent and exhibit a combination of relevant properties, such as mechanical strength, biocompatibility, biodegradability, ability to induce adhesion and proliferation of Schwann cells (SCs) preserving their viability. Moreover, the most promising hydrogels, that is those deriving from 1,4-bis(acryloyl)piperazine, allow the in vitro growth of the sensitive neurons of the dorsal root ganglia, thus getting around a critical point in the design of conduits for nerve regeneration. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
2013
Mauro, N., Manfredi, A., Ranucci, E., Procacci, P., Laus, M., Antonioli, D., et al. (2013). Degradable Poly(amidoamine) Hydrogels as Scaffolds for In Vitro Culturing of Peripheral Nervous System Cells. MACROMOLECULAR BIOSCIENCE, 13(3), 332-347 [10.1002/mabi.201200354].
File in questo prodotto:
File Dimensione Formato  
Mauro_et_al-2013-Macromolecular_Bioscience.pdf

Solo gestori archvio

Dimensione 1.17 MB
Formato Adobe PDF
1.17 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10447/124424
Citazioni
  • ???jsp.display-item.citation.pmc??? 7
  • Scopus 25
  • ???jsp.display-item.citation.isi??? 24
social impact