The authors consider the class $V_\varphi^R (I^b_a)$ of functions $f:I^b_a =[a_1,b_1]\times [a_2,b_2]\subset \mathbb{R}^2 \to \mathbb{R}$ with bounded $\varphi$-total variation in the sense of Riesz, where $\varphi: [0,+ \infty) \to [0,+ \infty)$ is nondecreasing and continuous with $\varphi(0)=0$ and $\varphi(t) \to +\infty$ as $t \to +\infty$. If we assume that $\varphi$ is also such that $\lim_{t \to +\infty}\frac{\varphi(t)}{t}= +\infty$, then we obtain the main result. Precisely, the authors give a characterization of function of two variables defined on a rectangle $I^b_a$ belonging to $V_\varphi^R (I^b_a)$. Clearly, this result is a generalization of the Riesz Lemma.

Vetro, P. (2012). MR2789279 Aziz, Wadie; Leiva, Hugo; Merentes, Nelson; Rzepka, Beata A representation theorem for φ-bounded variation of functions in the sense of Riesz. Comment. Math. 50 (2010), no. 2, 109–120. (Reviewer: Pasquale Vetro).

MR2789279 Aziz, Wadie; Leiva, Hugo; Merentes, Nelson; Rzepka, Beata A representation theorem for φ-bounded variation of functions in the sense of Riesz. Comment. Math. 50 (2010), no. 2, 109–120. (Reviewer: Pasquale Vetro)

VETRO, Pasquale
2012-01-01

Abstract

The authors consider the class $V_\varphi^R (I^b_a)$ of functions $f:I^b_a =[a_1,b_1]\times [a_2,b_2]\subset \mathbb{R}^2 \to \mathbb{R}$ with bounded $\varphi$-total variation in the sense of Riesz, where $\varphi: [0,+ \infty) \to [0,+ \infty)$ is nondecreasing and continuous with $\varphi(0)=0$ and $\varphi(t) \to +\infty$ as $t \to +\infty$. If we assume that $\varphi$ is also such that $\lim_{t \to +\infty}\frac{\varphi(t)}{t}= +\infty$, then we obtain the main result. Precisely, the authors give a characterization of function of two variables defined on a rectangle $I^b_a$ belonging to $V_\varphi^R (I^b_a)$. Clearly, this result is a generalization of the Riesz Lemma.
2012
Vetro, P. (2012). MR2789279 Aziz, Wadie; Leiva, Hugo; Merentes, Nelson; Rzepka, Beata A representation theorem for φ-bounded variation of functions in the sense of Riesz. Comment. Math. 50 (2010), no. 2, 109–120. (Reviewer: Pasquale Vetro).
File in questo prodotto:
File Dimensione Formato  
2789279.pdf

Solo gestori archvio

Descrizione: Recensione
Dimensione 133.69 kB
Formato Adobe PDF
133.69 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10447/104711
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact