The present paper aims at showing that there are times when set theoretical knowledge increases in a non-cumulative way. In other words, what we call 'set theory' is not 'one' theory which grows by simple addition of a theorem after the other, but a finite sequence of theories T(1),..., T(n) in which T(i+1) supersedes T(i). This thesis has great philosophical significance because it implies that there is a sense in which mathematical theories, like the theories belonging to the empirical sciences, are fallible and that, consequently, mathematical knowledge has a quasi-empirical nature. The way I have chosen to provide evidence in favour of the correctness of the main thesis of this article consists in arguing that Cantor-Zermelo set theory is a Lakatosian Mathematical Research Programme (MRP).
OLIVERI G (2006). MATHEMATICS AS A QUASI-EMPIRICAL SCIENCE. FOUNDATIONS OF SCIENCE, 11(1-2), 41-79 [10.1007/s10699-004-5912-3].
MATHEMATICS AS A QUASI-EMPIRICAL SCIENCE
OLIVERI, Gianluigi
2006-01-01
Abstract
The present paper aims at showing that there are times when set theoretical knowledge increases in a non-cumulative way. In other words, what we call 'set theory' is not 'one' theory which grows by simple addition of a theorem after the other, but a finite sequence of theories T(1),..., T(n) in which T(i+1) supersedes T(i). This thesis has great philosophical significance because it implies that there is a sense in which mathematical theories, like the theories belonging to the empirical sciences, are fallible and that, consequently, mathematical knowledge has a quasi-empirical nature. The way I have chosen to provide evidence in favour of the correctness of the main thesis of this article consists in arguing that Cantor-Zermelo set theory is a Lakatosian Mathematical Research Programme (MRP).File | Dimensione | Formato | |
---|---|---|---|
Oliveri2006_Article_MathematicsAsAQuasi-EmpiricalS.pdf
Solo gestori archvio
Dimensione
198.42 kB
Formato
Adobe PDF
|
198.42 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.