Let $\mu = (\mu_{1}, \mu_{2}, \ldots, \mu_{m})$ and $\nu = (\nu_{1}, \nu_{2}, \ldots, \nu_{n})$ be two partitions of a positive integer $d$. In this paper, the author considers degree $d$ branched coverings of $\mathbb{P}^{1}$ with at most two special points, $0$ and $\infty$. Specifically, the purpose of the author is to give a recursion formula for double Hurwitz numbers $H^{g}_{\mu, \nu}$ by the cut-join analysis. Here, $H^{g}_{\mu, \nu}$ denotes the number of genus $g$ branched covers of $\mathbb{P}^{1}$ with branching date corresponding to $\mu$ and $\nu$ over $0$ and $\infty$, respectively. Furthemore, as application, the author gets a polynomial identity for linear Goulden-Jackson-Vakil intersection numbers.
Vetro, F. (2013). MR 2944715 Reviewed Zhu S. On the recursion formula for double Hurwitz numbers. Proceedings of the American Mathematical Society (2012) 140, no. 11, 3749--3760. (Reviewer Francesca Vetro) 14H30 (05E05 14H10). MATHEMATICAL REVIEWS, 2013.
MR 2944715 Reviewed Zhu S. On the recursion formula for double Hurwitz numbers. Proceedings of the American Mathematical Society (2012) 140, no. 11, 3749--3760. (Reviewer Francesca Vetro) 14H30 (05E05 14H10)
VETRO, Francesca
2013-01-01
Abstract
Let $\mu = (\mu_{1}, \mu_{2}, \ldots, \mu_{m})$ and $\nu = (\nu_{1}, \nu_{2}, \ldots, \nu_{n})$ be two partitions of a positive integer $d$. In this paper, the author considers degree $d$ branched coverings of $\mathbb{P}^{1}$ with at most two special points, $0$ and $\infty$. Specifically, the purpose of the author is to give a recursion formula for double Hurwitz numbers $H^{g}_{\mu, \nu}$ by the cut-join analysis. Here, $H^{g}_{\mu, \nu}$ denotes the number of genus $g$ branched covers of $\mathbb{P}^{1}$ with branching date corresponding to $\mu$ and $\nu$ over $0$ and $\infty$, respectively. Furthemore, as application, the author gets a polynomial identity for linear Goulden-Jackson-Vakil intersection numbers.| File | Dimensione | Formato | |
|---|---|---|---|
|
2944715.pdf
Solo gestori archvio
Dimensione
156.93 kB
Formato
Adobe PDF
|
156.93 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


