Let K be a finitely generated field of characteristic zero, l be a prime number and S be a scheme. In this paper, the author studies isomorphism classes of hyperbolic curves. The author calls the pair (C, D), where C is a scheme over S and D \subset C is a closed subscheme of C, a hyperbolic curve of type (g, r) over S if C is smooth and proper over S, if any geometric fiber of C \rightarrow S is a connected curve of genus g and if the composite D \rightarrow C \rightarrow S is a finite \'{e}tale covering over S of degree r. The main result of this paper is that the isomorphism class of a hyperbolic curve of genus zero over K that is l-monodromically full is completely determinated by the kernel of the natural pro-l outer Galois representation associated to the hyperbolic curve. The author moreover considers hyperbolic curves of type (0, 4) and gives sufficient conditions for such curves to be monodromically full.
Vetro, F. (2013). MR 2834249 Reviewed Hoshi Y., Galois-theoretic characterization of isomorphism classes of monodromically full hyperbolic curves of genus zero, Nagoya Math. J. (2011) 203, 47--100 ( Reviewer Francesca Vetro) 14H30 (14H10).
MR 2834249 Reviewed Hoshi Y., Galois-theoretic characterization of isomorphism classes of monodromically full hyperbolic curves of genus zero, Nagoya Math. J. (2011) 203, 47--100 ( Reviewer Francesca Vetro) 14H30 (14H10)
VETRO, Francesca
2013-01-01
Abstract
Let K be a finitely generated field of characteristic zero, l be a prime number and S be a scheme. In this paper, the author studies isomorphism classes of hyperbolic curves. The author calls the pair (C, D), where C is a scheme over S and D \subset C is a closed subscheme of C, a hyperbolic curve of type (g, r) over S if C is smooth and proper over S, if any geometric fiber of C \rightarrow S is a connected curve of genus g and if the composite D \rightarrow C \rightarrow S is a finite \'{e}tale covering over S of degree r. The main result of this paper is that the isomorphism class of a hyperbolic curve of genus zero over K that is l-monodromically full is completely determinated by the kernel of the natural pro-l outer Galois representation associated to the hyperbolic curve. The author moreover considers hyperbolic curves of type (0, 4) and gives sufficient conditions for such curves to be monodromically full.File | Dimensione | Formato | |
---|---|---|---|
2834249.pdf
Solo gestori archvio
Dimensione
161.62 kB
Formato
Adobe PDF
|
161.62 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.