In this paper the authors show the relation between the definitions of Li-Yorke chaos and distributional chaos in discrete dynamical systems. In particular, after listing the main definitions and reviewing the known results, the authors prove that: • a discrete dynamical system is chaotic in the sense of Martelli and Wiggins when it exhibits transitive distributional chaos; • a discrete dynamical system is distributively chaotic in a sequence when it is chaotic in the strong sense of Li-Yorke. Finally, the authors prove a sufficient condition for the dynamical system to be chaotic in the strong sense of Li-Yorke.
gambino, G. (2013). MR3039719 Reviewed Wang, Lidong; Liu, Heng; Gao, Yuelin Chaos for discrete dynamical system. J. Appl. Math. 2013, Art. ID 212036, 4 pp. (Reviewer: Gaetana Gambino) 37D45. MATHEMATICAL REVIEWS, 2013.
MR3039719 Reviewed Wang, Lidong; Liu, Heng; Gao, Yuelin Chaos for discrete dynamical system. J. Appl. Math. 2013, Art. ID 212036, 4 pp. (Reviewer: Gaetana Gambino) 37D45
GAMBINO, Gaetana
2013-01-01
Abstract
In this paper the authors show the relation between the definitions of Li-Yorke chaos and distributional chaos in discrete dynamical systems. In particular, after listing the main definitions and reviewing the known results, the authors prove that: • a discrete dynamical system is chaotic in the sense of Martelli and Wiggins when it exhibits transitive distributional chaos; • a discrete dynamical system is distributively chaotic in a sequence when it is chaotic in the strong sense of Li-Yorke. Finally, the authors prove a sufficient condition for the dynamical system to be chaotic in the strong sense of Li-Yorke.| File | Dimensione | Formato | |
|---|---|---|---|
|
3039719.pdf
Solo gestori archvio
Dimensione
24.21 kB
Formato
Adobe PDF
|
24.21 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


