Given a Lattice of Hilbert spaces VJ and a symmetric operator A in VJ , in the sense of partial inner product spaces, we define a generalized resolvent for A and study the corresponding spectral properties. In particular, we examine, with help of the KLMN theorem, the question of generalized eigenvalues associated to points of the continuous (Hilbertian) spectrum. We give some examples, including so-called frame multipliers.

Antoine, J., Trapani, C. (2016). Operators on Partial Inner Product Spaces: Towards a Spectral Analysis. MEDITERRANEAN JOURNAL OF MATHEMATICS, 13(1), 323-351 [10.1007/s00009-014-0499-6].

Operators on Partial Inner Product Spaces: Towards a Spectral Analysis

TRAPANI, Camillo
2016-01-01

Abstract

Given a Lattice of Hilbert spaces VJ and a symmetric operator A in VJ , in the sense of partial inner product spaces, we define a generalized resolvent for A and study the corresponding spectral properties. In particular, we examine, with help of the KLMN theorem, the question of generalized eigenvalues associated to points of the continuous (Hilbertian) spectrum. We give some examples, including so-called frame multipliers.
2016
Antoine, J., Trapani, C. (2016). Operators on Partial Inner Product Spaces: Towards a Spectral Analysis. MEDITERRANEAN JOURNAL OF MATHEMATICS, 13(1), 323-351 [10.1007/s00009-014-0499-6].
File in questo prodotto:
File Dimensione Formato  
PIP-Ops-MJM.pdf

Solo gestori archvio

Dimensione 457.51 kB
Formato Adobe PDF
457.51 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10447/103242
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 5
social impact