Let $X$ be a non-empty set. We say that an element $x\in X$ is a $\varphi$-fixed point of $T$, where $\varphi: X\to [0,\infty)$ and $T: X\to X$, if $x$ is a fixed point of $T$ and $\varphi(x)=0$. In this paper, we establish some existence results of $\varphi$-fixed points for various classes of operators in the case, where $X$ is endowed with a metric $d$. The obtained results are used to deduce some fixed point theorems in the case where $X$ is endowed with a partial metric $p$.

Jleli, M., Samet, B., Vetro, C. (2014). Fixed point theory in partial metric spaces via $\varphi$-fixed point's concept in metric spaces. JOURNAL OF INEQUALITIES AND APPLICATIONS, 2014, 1-9 [10.1186/1029-242X-2014-426].

Fixed point theory in partial metric spaces via $\varphi$-fixed point's concept in metric spaces

VETRO, Calogero
2014-01-01

Abstract

Let $X$ be a non-empty set. We say that an element $x\in X$ is a $\varphi$-fixed point of $T$, where $\varphi: X\to [0,\infty)$ and $T: X\to X$, if $x$ is a fixed point of $T$ and $\varphi(x)=0$. In this paper, we establish some existence results of $\varphi$-fixed points for various classes of operators in the case, where $X$ is endowed with a metric $d$. The obtained results are used to deduce some fixed point theorems in the case where $X$ is endowed with a partial metric $p$.
2014
Settore MAT/05 - Analisi Matematica
Jleli, M., Samet, B., Vetro, C. (2014). Fixed point theory in partial metric spaces via $\varphi$-fixed point's concept in metric spaces. JOURNAL OF INEQUALITIES AND APPLICATIONS, 2014, 1-9 [10.1186/1029-242X-2014-426].
File in questo prodotto:
File Dimensione Formato  
2014_JIA_JleliSametVetro.pdf

Solo gestori archvio

Descrizione: Articolo principale
Dimensione 441.93 kB
Formato Adobe PDF
441.93 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10447/103238
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 44
  • ???jsp.display-item.citation.isi??? 38
social impact