In this article we study the existence and multiplicity of solutions for the Dirichlet problem $$\displaylines{ -\Delta_p u=\lambda f(x,u)+ \mu g(x,u)\quad\hbox{in }\Omega,\cr u=0\quad\hbox{on } \partial \Omega}$$ where $\Omega$ is a bounded domain in $\mathbb{R}^N$, $f,g:\Omega \times \mathbb{R}\to \mathbb{R}$ are Caratheodory functions, and $\lambda,\mu$ are nonnegative parameters. We impose no growth condition at $\infty$ on the nonlinearities f,g. A corollary to our main result improves an existence result recently obtained by Bonanno via a critical point theorem for $C^1$ functionals which do not satisfy the usual sequential weak lower semicontinuity property.

Anello, G., Tulone, F. (2014). Existence and multiplicity of solutions for Dirichlet problems involving nonlinearities with arbitrary growth. ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2014(200), 1-7.

Existence and multiplicity of solutions for Dirichlet problems involving nonlinearities with arbitrary growth.

TULONE, Francesco
2014-01-01

Abstract

In this article we study the existence and multiplicity of solutions for the Dirichlet problem $$\displaylines{ -\Delta_p u=\lambda f(x,u)+ \mu g(x,u)\quad\hbox{in }\Omega,\cr u=0\quad\hbox{on } \partial \Omega}$$ where $\Omega$ is a bounded domain in $\mathbb{R}^N$, $f,g:\Omega \times \mathbb{R}\to \mathbb{R}$ are Caratheodory functions, and $\lambda,\mu$ are nonnegative parameters. We impose no growth condition at $\infty$ on the nonlinearities f,g. A corollary to our main result improves an existence result recently obtained by Bonanno via a critical point theorem for $C^1$ functionals which do not satisfy the usual sequential weak lower semicontinuity property.
2014
Anello, G., Tulone, F. (2014). Existence and multiplicity of solutions for Dirichlet problems involving nonlinearities with arbitrary growth. ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2014(200), 1-7.
File in questo prodotto:
File Dimensione Formato  
EJDE.pdf

Solo gestori archvio

Dimensione 211.18 kB
Formato Adobe PDF
211.18 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10447/102134
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact