RATIONALE: The study of surfactant organization in vacuum allows surfactant–surfactant interaction to be unveiled in the absence of surrounding solvent molecules. Knowledge on their chemical-physical properties may also lead to the definition of more efficient gas-phase carriers, air-cleaning agents and nanoreactors. In addition, the presence of lanthanide-group ions adds unique photochemical properties to surfactants. METHODS: The structural features, stability and fragmentation patterns of charged aggregates formed by lanthanide- functionalized surfactants, ytterbium and erbium bis(2-ethylhexyl)sulfosuccinate ((AOT) 3 Yb and (AOT) 3 Er), have been investigated by electrospray ionization mass spectrometry (ESI-MS), tandem mass spectrometry (ESI-MS/MS) and energy-resolved mass spectrometry (ER-MS). RESULTS: The experimental data indicate that the self-assembling of (AOT) 3 Yb and (AOT) 3 Er in the gas phase leads to the formation of a wide range of singly charged aggregates differing in their aggregation number, relative abundance and stability. In addition to specific effects on aggregate organization due to the presence of lanthanide ions, ER-MS experiments show rearrangements and in-cage reactions activated by collision, eventually including alkyl chain intra- cluster migration. CONCLUSIONS: Analysis of the experimental findings suggests that the observed chemical transformations occur within an organized supramolecular assembly rather than in a random association of components. The fragmentation pathways leading to the neutral loss of a fragment of nominal mass 534 Da, assigned as C 28 H 54 O 7 S, from some positively charged aggregates has been rationalized.

Indelicato, S., Bongiorno, D., Turco Liveri, V., Mele, A., Panzeri, W., Castiglione, F., et al. (2014). Self-assembly and intra-cluster reactions of erbium and ytterbium bis(2-ethylhexyl)sulfosuccinates in the gas phase. RAPID COMMUNICATIONS IN MASS SPECTROMETRY, 28, 2523-2530 [10.1002/rcm.7045].

Self-assembly and intra-cluster reactions of erbium and ytterbium bis(2-ethylhexyl)sulfosuccinates in the gas phase

INDELICATO, Serena;BONGIORNO, David;TURCO LIVERI, Vincenzo;CERAULO, Leopoldo
2014-01-01

Abstract

RATIONALE: The study of surfactant organization in vacuum allows surfactant–surfactant interaction to be unveiled in the absence of surrounding solvent molecules. Knowledge on their chemical-physical properties may also lead to the definition of more efficient gas-phase carriers, air-cleaning agents and nanoreactors. In addition, the presence of lanthanide-group ions adds unique photochemical properties to surfactants. METHODS: The structural features, stability and fragmentation patterns of charged aggregates formed by lanthanide- functionalized surfactants, ytterbium and erbium bis(2-ethylhexyl)sulfosuccinate ((AOT) 3 Yb and (AOT) 3 Er), have been investigated by electrospray ionization mass spectrometry (ESI-MS), tandem mass spectrometry (ESI-MS/MS) and energy-resolved mass spectrometry (ER-MS). RESULTS: The experimental data indicate that the self-assembling of (AOT) 3 Yb and (AOT) 3 Er in the gas phase leads to the formation of a wide range of singly charged aggregates differing in their aggregation number, relative abundance and stability. In addition to specific effects on aggregate organization due to the presence of lanthanide ions, ER-MS experiments show rearrangements and in-cage reactions activated by collision, eventually including alkyl chain intra- cluster migration. CONCLUSIONS: Analysis of the experimental findings suggests that the observed chemical transformations occur within an organized supramolecular assembly rather than in a random association of components. The fragmentation pathways leading to the neutral loss of a fragment of nominal mass 534 Da, assigned as C 28 H 54 O 7 S, from some positively charged aggregates has been rationalized.
2014
Indelicato, S., Bongiorno, D., Turco Liveri, V., Mele, A., Panzeri, W., Castiglione, F., et al. (2014). Self-assembly and intra-cluster reactions of erbium and ytterbium bis(2-ethylhexyl)sulfosuccinates in the gas phase. RAPID COMMUNICATIONS IN MASS SPECTROMETRY, 28, 2523-2530 [10.1002/rcm.7045].
File in questo prodotto:
File Dimensione Formato  
Indelicato_et_al-2014-.pdf

Solo gestori archvio

Descrizione: pdf
Dimensione 1.18 MB
Formato Adobe PDF
1.18 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10447/100787
Citazioni
  • ???jsp.display-item.citation.pmc??? 1
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
social impact