The supply chain of perishable products, as fruits and vegetables is affected by environmental abuses from harvest to the final destination which are responsible the uncontrolled deterioration of food. In order to reduce such phenomena the supply chain members should control and monitor the conditions of goods in order to ensure their quality for consumers and to comply with all legal requirements (Garcia Ruiz, 2008). The most important factor influencing the food quality is the temperature able to prolonging the shelf life of the products. Since the temperature can inhibit or promote the maturation and deterioration process, this parameter is involved both in the growing process of fruits and vegetables and in the transport and storage stages. Given this the aim of the present thesis is to show that the monitoring of such parameter during the pre and post harvest stages allows to improve the decision making process. In the context of temperature monitoring the introduction of emerging information technologies such as the Wireless Sensors Networks and the Radio Frequency Identification can now provide real-time status knowing of product managed. The real time monitoring can be of great help in the definition of the actual maturation level of products both in the field and during the cold chain. The suitability of such an approach is evaluated by means of case studies. The first case study concerns the monitoring of grapes growth directly in the vineyard. The suitability of Wireless Sensors Networks in the monitoring of the grapes growth process is evaluated in terms of the possibility to determine the date of starting or ending of phenological phases. This information allows to make faster decisions about the vineyard operations which must be performed during the grape growth and finally allows to predict the maturation date in order to optimize the harvest operations. In the next case study the possibility to apply the Radio Frequency Identification technology to the monitoring of the fresh fruits along the cold chain has been faced and the quality of the products at any stage of the supply chain has been determined through a mathematical model. The knowing of the current quality level allows to make decisions about the destination of products. In this case those products having a shorter shelf life can be distributed to a local market while those with longer shelf life can be distributed to more distant location. In the next case study the information about the current deterioration state of perishable products has been translated into a warehouse management system in order to determine the operational parameters able to optimize the quality of products stored. Even in this case the goal of the study was to provide a decision making tool for the proper management of the perishable products stored. However besides the advantages achievable by the real time evaluation of environmental conditions the costs involved with the implementation of innovative technologies must be determined in order to establish the suitability of the investment in such innovative technologies. The present thesis also faces this question by determining the optimal number of devices to apply to the stock keeping unit in order to minimize the total cost associated to the transferring batch from the producer to the distributor. In this case the methodology employed is that of a mathematical model including all costs associated to the product management. Finally the study conducted through the present thesis shows that in all of the cases treated the use of the innovative technologies allows to support the decision making process in the pre and post harvest phases thus improving the perishables management.
(2012). Sviluppo di modelli decisionali per la supply chain di prodotti deperibili mediante l’applicazione di tecnologie innovative. (Tesi di dottorato, Università degli Studi di Palermo, 2012).
Sviluppo di modelli decisionali per la supply chain di prodotti deperibili mediante l’applicazione di tecnologie innovative
MURIANA, Cinzia
2012-03-20
Abstract
The supply chain of perishable products, as fruits and vegetables is affected by environmental abuses from harvest to the final destination which are responsible the uncontrolled deterioration of food. In order to reduce such phenomena the supply chain members should control and monitor the conditions of goods in order to ensure their quality for consumers and to comply with all legal requirements (Garcia Ruiz, 2008). The most important factor influencing the food quality is the temperature able to prolonging the shelf life of the products. Since the temperature can inhibit or promote the maturation and deterioration process, this parameter is involved both in the growing process of fruits and vegetables and in the transport and storage stages. Given this the aim of the present thesis is to show that the monitoring of such parameter during the pre and post harvest stages allows to improve the decision making process. In the context of temperature monitoring the introduction of emerging information technologies such as the Wireless Sensors Networks and the Radio Frequency Identification can now provide real-time status knowing of product managed. The real time monitoring can be of great help in the definition of the actual maturation level of products both in the field and during the cold chain. The suitability of such an approach is evaluated by means of case studies. The first case study concerns the monitoring of grapes growth directly in the vineyard. The suitability of Wireless Sensors Networks in the monitoring of the grapes growth process is evaluated in terms of the possibility to determine the date of starting or ending of phenological phases. This information allows to make faster decisions about the vineyard operations which must be performed during the grape growth and finally allows to predict the maturation date in order to optimize the harvest operations. In the next case study the possibility to apply the Radio Frequency Identification technology to the monitoring of the fresh fruits along the cold chain has been faced and the quality of the products at any stage of the supply chain has been determined through a mathematical model. The knowing of the current quality level allows to make decisions about the destination of products. In this case those products having a shorter shelf life can be distributed to a local market while those with longer shelf life can be distributed to more distant location. In the next case study the information about the current deterioration state of perishable products has been translated into a warehouse management system in order to determine the operational parameters able to optimize the quality of products stored. Even in this case the goal of the study was to provide a decision making tool for the proper management of the perishable products stored. However besides the advantages achievable by the real time evaluation of environmental conditions the costs involved with the implementation of innovative technologies must be determined in order to establish the suitability of the investment in such innovative technologies. The present thesis also faces this question by determining the optimal number of devices to apply to the stock keeping unit in order to minimize the total cost associated to the transferring batch from the producer to the distributor. In this case the methodology employed is that of a mathematical model including all costs associated to the product management. Finally the study conducted through the present thesis shows that in all of the cases treated the use of the innovative technologies allows to support the decision making process in the pre and post harvest phases thus improving the perishables management.File | Dimensione | Formato | |
---|---|---|---|
Tesi Dottorato Cinzia Muriana.pdf
accesso aperto
Dimensione
3.56 MB
Formato
Adobe PDF
|
3.56 MB | Adobe PDF | Visualizza/Apri |
Tesi Dottorato Cinzia Muriana.pdf
accesso aperto
Dimensione
3.56 MB
Formato
Adobe PDF
|
3.56 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.