In this paper we present a technique for object recognition and modelling based on local image features matching. Given a complete set of views of an object the goal of our technique is the recognition of the same object in an image of a cluttered environment containing the object and an estimate of its pose. The method is based on visual modeling of objects from a multi-view representation of the object to recognize. The first step consists of creating object model, selecting a subset of the available views using SIFT descriptors to evaluate image similarity and relevance. The selected views are then assumed as the model of the object and we show that they can effectively be used to visually represent the main aspects of the object. Recognition is done making comparison between the image containing an object in generic position and the views selected as object models. Once an object has been recognized the pose can be estimated searching the complete set of views of the object. Experimental results are very encouraging using both a private dataset we acquired in our lab and a publicly available dataset.

Bruno, A., Greco, L., La Cascia, M. (2013). Object Recognition and Modeling Using SIFT Features. In Advanced Concepts for Intelligent Vision Systems (pp.250-261). Poznan : Springer International Publishing [10.1007/978-3-319-02895-8_23].

Object Recognition and Modeling Using SIFT Features

BRUNO, Alessandro;GRECO, Luca;LA CASCIA, Marco
2013-01-01

Abstract

In this paper we present a technique for object recognition and modelling based on local image features matching. Given a complete set of views of an object the goal of our technique is the recognition of the same object in an image of a cluttered environment containing the object and an estimate of its pose. The method is based on visual modeling of objects from a multi-view representation of the object to recognize. The first step consists of creating object model, selecting a subset of the available views using SIFT descriptors to evaluate image similarity and relevance. The selected views are then assumed as the model of the object and we show that they can effectively be used to visually represent the main aspects of the object. Recognition is done making comparison between the image containing an object in generic position and the views selected as object models. Once an object has been recognized the pose can be estimated searching the complete set of views of the object. Experimental results are very encouraging using both a private dataset we acquired in our lab and a publicly available dataset.
Settore ING-INF/05 - Sistemi Di Elaborazione Delle Informazioni
2013
Advanced Concepts for Intelligent Vision Systems (15th International Conference, ACIVS 2013, Poznań, Poland, October 28-31, 2013. Proceedings)
Poznań, Poland
October 28-31, 2013.
2013
12
Bruno, A., Greco, L., La Cascia, M. (2013). Object Recognition and Modeling Using SIFT Features. In Advanced Concepts for Intelligent Vision Systems (pp.250-261). Poznan : Springer International Publishing [10.1007/978-3-319-02895-8_23].
Proceedings (atti dei congressi)
Bruno, A; Greco, L; La Cascia, M.
File in questo prodotto:
File Dimensione Formato  
Table of contents.pdf

accesso aperto

Dimensione 1.43 MB
Formato Adobe PDF
1.43 MB Adobe PDF Visualizza/Apri
LNCS_8192_ACIVS2013_cover.pdf

accesso aperto

Dimensione 3.25 MB
Formato Adobe PDF
3.25 MB Adobe PDF Visualizza/Apri
Paper.pdf

accesso aperto

Dimensione 2.09 MB
Formato Adobe PDF
2.09 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10447/93963
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 1
social impact