We study a Langevin equation derived from the Michaelis-Menten (MM) phenomenological scheme for catalysis accompanying a spontaneous replication of molecules, which may serve as a simple model of cell-mediated immune surveillance against cancer. We examine how two different and statistically independent sources of noise - dichotomous multiplicative noise and additive Gaussian white noise - influence the population's extinction time. This quantity is identified as the mean first passage time of the system across the zero population state. We observe the effects of resonant activation (RA) and noise-enhanced stability (NES) and we report the evidence for competitive co-occurrence of both phenomena in a given regime of noise parameters. We discuss the statistics of first passage times in this regime and the role of different pseudo-potential profiles on the RA and NES phenomena. The RA/NES coexistence region brings an interesting interpretation for the growth kinetics of cancer cells population, as the NES effect enhancing the stability of the tumoral state becomes strongly reduced by the RA phenomenon
ANNA OCHAB-MARCINEK, EWA GUDOWSKA-NOWAK, ALESSANDRO FIASCONARO, SPAGNOLO B (2006). Coexistence of Resonant Activation and Noise Enhanced Stability in a Model of Tumor-Host Interaction: Statistics of Extinction Times. In Acta Physica Polonica B (pp.1651-1666).
Coexistence of Resonant Activation and Noise Enhanced Stability in a Model of Tumor-Host Interaction: Statistics of Extinction Times
FIASCONARO, Alessandro;SPAGNOLO, Bernardo
2006-01-01
Abstract
We study a Langevin equation derived from the Michaelis-Menten (MM) phenomenological scheme for catalysis accompanying a spontaneous replication of molecules, which may serve as a simple model of cell-mediated immune surveillance against cancer. We examine how two different and statistically independent sources of noise - dichotomous multiplicative noise and additive Gaussian white noise - influence the population's extinction time. This quantity is identified as the mean first passage time of the system across the zero population state. We observe the effects of resonant activation (RA) and noise-enhanced stability (NES) and we report the evidence for competitive co-occurrence of both phenomena in a given regime of noise parameters. We discuss the statistics of first passage times in this regime and the role of different pseudo-potential profiles on the RA and NES phenomena. The RA/NES coexistence region brings an interesting interpretation for the growth kinetics of cancer cells population, as the NES effect enhancing the stability of the tumoral state becomes strongly reduced by the RA phenomenonFile | Dimensione | Formato | |
---|---|---|---|
14_RA and NES in tumor model_APPB_2006.pdf
accesso aperto
Dimensione
733.94 kB
Formato
Adobe PDF
|
733.94 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.