We consider an Henstock-Kurzweil type integral defined on a complete measure metric space $X=(X, d)$ endowed with a Radon measure $\mu$ and with a family $\F$ of ``intervals" that satisfies, besides usual conditions, the Vitali covering theorem. In particular, for such integral, we obtain extensions of the descriptive characterization of the classical Henstock-Kurzweil integral on the real line, in terms of $ACG_*$ functions and in terms of variational measures. Moreover we show that, besides the usual Henstock-Kurzweil integral on the real line, such integral includes also the dyadic Henstock-Kurzweil integral, the $GP$-integral and the $s$-HK integral. For this last integral we prove a better version of the Fundamental Theorem of Calculus since the classical one is not true in this setting.

Corrao, . (2014). An Henstock-Kurzweil type integral on a meausure metric space.

An Henstock-Kurzweil type integral on a meausure metric space

CORRAO, Giuseppa
2014-02-28

Abstract

We consider an Henstock-Kurzweil type integral defined on a complete measure metric space $X=(X, d)$ endowed with a Radon measure $\mu$ and with a family $\F$ of ``intervals" that satisfies, besides usual conditions, the Vitali covering theorem. In particular, for such integral, we obtain extensions of the descriptive characterization of the classical Henstock-Kurzweil integral on the real line, in terms of $ACG_*$ functions and in terms of variational measures. Moreover we show that, besides the usual Henstock-Kurzweil integral on the real line, such integral includes also the dyadic Henstock-Kurzweil integral, the $GP$-integral and the $s$-HK integral. For this last integral we prove a better version of the Fundamental Theorem of Calculus since the classical one is not true in this setting.
28-feb-2014
$\mu$-HK integral; critical variation; $ACG^\bigtriangleup$; s-set; s-HK integral.
Corrao, . (2014). An Henstock-Kurzweil type integral on a meausure metric space.
File in questo prodotto:
File Dimensione Formato  
Tesi di dottorato G_Corrao.pdf

Open Access dal 02/01/2015

Descrizione: tesi di dottorato
Dimensione 928.8 kB
Formato Adobe PDF
928.8 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10447/91249
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact