The main goal of the thesis is the development of human-robotic interaction control strategies, which enable close collaboration between human and robot. In this framework we studied two di erent aspects, with applications respectively in industrial and rehabilitation domains. In the rst part safety issues are examined on a scenario in which a robot manipulator and a human perform the same task and in the same workspace. During the task execution the human should be able to get into contact with the robot and in this case an estimation algorithm of both interaction forces and contact point is proposed in order to guarantee safety conditions. At the same time, all the unintended contacts have to be avoided, and a suitable post collision strategy has been studied to move away the robot from the collision area or to reduce the impact e orts. However, the second part of the thesis focus on the cooperation between an orthesis and a patient. Indeed, in order to support a rehabilitation process, gait parameters, such as hip and knee angles or the beginning of a gait phase, have been estimated. For this purpose a sensor system, consisting of accelerometers and gyroscopes, and algorithms, developed in order to avoid the error accumulation due to the gyroscopes drift and the vibrations related to the beginning of the stance phase due to the accelerometers, have been proposed.

The main goal of the thesis is the development of human-robotic interaction control strategies, which enable close collaboration between human and robot. In this framework we studied two di erent aspects, with applications respectively in industrial and rehabilitation domains. In the rst part safety issues are examined on a scenario in which a robot manipulator and a human perform the same task and in the same workspace. During the task execution the human should be able to get into contact with the robot and in this case an estimation algorithm of both interaction forces and contact point is proposed in order to guarantee safety conditions. At the same time, all the unintended contacts have to be avoided, and a suitable post collision strategy has been studied to move away the robot from the collision area or to reduce the impact e orts. However, the second part of the thesis focus on the cooperation between an orthesis and a patient. Indeed, in order to support a rehabilitation process, gait parameters, such as hip and knee angles or the beginning of a gait phase, have been estimated. For this purpose a sensor system, consisting of accelerometers and gyroscopes, and algorithms, developed in order to avoid the error accumulation due to the gyroscopes drift and the vibrations related to the beginning of the stance phase due to the accelerometers, have been proposed.

(2014). ROBOTIC INTERACTION AND COOPERATION. Industrial and rehabilitative applications. (Tesi di dottorato, Università degli Studi di Palermo, 2014).

ROBOTIC INTERACTION AND COOPERATION. Industrial and rehabilitative applications

CUCCO, Elisa
2014-02-28

Abstract

The main goal of the thesis is the development of human-robotic interaction control strategies, which enable close collaboration between human and robot. In this framework we studied two di erent aspects, with applications respectively in industrial and rehabilitation domains. In the rst part safety issues are examined on a scenario in which a robot manipulator and a human perform the same task and in the same workspace. During the task execution the human should be able to get into contact with the robot and in this case an estimation algorithm of both interaction forces and contact point is proposed in order to guarantee safety conditions. At the same time, all the unintended contacts have to be avoided, and a suitable post collision strategy has been studied to move away the robot from the collision area or to reduce the impact e orts. However, the second part of the thesis focus on the cooperation between an orthesis and a patient. Indeed, in order to support a rehabilitation process, gait parameters, such as hip and knee angles or the beginning of a gait phase, have been estimated. For this purpose a sensor system, consisting of accelerometers and gyroscopes, and algorithms, developed in order to avoid the error accumulation due to the gyroscopes drift and the vibrations related to the beginning of the stance phase due to the accelerometers, have been proposed.
28-feb-2014
The main goal of the thesis is the development of human-robotic interaction control strategies, which enable close collaboration between human and robot. In this framework we studied two di erent aspects, with applications respectively in industrial and rehabilitation domains. In the rst part safety issues are examined on a scenario in which a robot manipulator and a human perform the same task and in the same workspace. During the task execution the human should be able to get into contact with the robot and in this case an estimation algorithm of both interaction forces and contact point is proposed in order to guarantee safety conditions. At the same time, all the unintended contacts have to be avoided, and a suitable post collision strategy has been studied to move away the robot from the collision area or to reduce the impact e orts. However, the second part of the thesis focus on the cooperation between an orthesis and a patient. Indeed, in order to support a rehabilitation process, gait parameters, such as hip and knee angles or the beginning of a gait phase, have been estimated. For this purpose a sensor system, consisting of accelerometers and gyroscopes, and algorithms, developed in order to avoid the error accumulation due to the gyroscopes drift and the vibrations related to the beginning of the stance phase due to the accelerometers, have been proposed.
Human-Robot Interaction, Gait Analysis, Cooperative Robotics.
(2014). ROBOTIC INTERACTION AND COOPERATION. Industrial and rehabilitative applications. (Tesi di dottorato, Università degli Studi di Palermo, 2014).
File in questo prodotto:
File Dimensione Formato  
Tesi Dottorato.pdf

accesso aperto

Descrizione: Tesi Dottorato
Dimensione 12.34 MB
Formato Adobe PDF
12.34 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10447/87386
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact